Patents by Inventor Joe Griffith Cruz

Joe Griffith Cruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11462728
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 4, 2022
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20220209221
    Abstract: A composition of matter suitable for usage as a formative material for a lithium-sulfur battery cathode is provided. The composition of matter may include a carbon structure formed by multiple carbon particles interconnected to one another. Each carbon particle may include pores and exposed surfaces. In this way, an electrically conductive material (ECM) (e.g., silver and/or antimony) may be deposited in the pores and coated (e.g., conformally coated) on the exposed surfaces of respective carbon particles. In addition, at least some carbon particles may disintegrate and provide exposed surfaces prior to deposition of the ECM. For example, disintegrated carbon particles may have a greater surface-area-to-volume ratio than whole carbon particles, thereby providing an increased amount of surface area available for subsequent ECM deposition. In addition, in some aspects, an active material may be infiltrated in one or more carbon particles and pores.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20210226195
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 22, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20200381708
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 3, 2020
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Patent number: 10756334
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 25, 2020
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20200040444
    Abstract: Plasma spray systems comprise multiple zones wherein the energy required for different processes within the systems can be controlled independently. In some embodiments, a plasma spray system comprises a first zone wherein ionic species are generated from the target material using a first energy input, and the ionic species either combine to form a plurality of particles in the first zone, or form coatings on a plurality of input particles input into the first zone. The plasma spray system can further comprise a second zone, comprising a chamber coupled to a microwave energy source, which ionizes the plurality of particles to form a plurality of ionized particles and form a plasma jet. The plasma spray system can further comprise a third zone, comprising an electric field to accelerate the plurality of ionized particles and form a plasma spray.
    Type: Application
    Filed: July 2, 2019
    Publication date: February 6, 2020
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Daniel Cook, Joe Griffith Cruz, Thomas Riso
  • Publication number: 20200028155
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Application
    Filed: December 18, 2018
    Publication date: January 23, 2020
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Patent number: 10465128
    Abstract: A thermal cracking apparatus and method includes a body having an inner volume with a longitudinal axis, where a reaction zone surrounds the longitudinal axis. A feedstock process gas is flowed into the inner volume and longitudinally through the reaction zone during thermal cracking operations. A power control system controls electrical power to an elongated heating element, which is disposed within the inner volume. During thermal cracking operations, the elongated heating element is heated to a molecular cracking temperature to generate the reaction zone, the feedstock process gas is heated from the elongated heating element, the power control system uses a feedback parameter for adjusting the electrical power to maintain the molecular cracking temperature at a substantially constant value, and the heat thermally cracks molecules of the feedstock process gas that are within the reaction zone into constituent components of the molecules.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 5, 2019
    Assignee: Lyten, Inc.
    Inventors: Joe Griffith Cruz, Ryan Balmores, Thomas Riso, Philip David Fulmer, Hossein-Ali Ghezelbash, Ranjeeth Kalluri, Michael W. Stowell, Bryce H. Anzelmo
  • Patent number: 10269593
    Abstract: Apparatus for coupling a hot wire source to a process chamber is provided herein. In some embodiments, an apparatus for coupling a hot wire source to a process chamber may include: a housing having an open end and a through hole formed through a top and a bottom of the housing; and a filament assembly configured to be disposed within the housing, the filament assembly having a frame and a plurality of filaments disposed across the frame, wherein the plurality of filaments of the filament assembly are substantially parallel with the top and the bottom of the housing and at least a portion of the plurality of filaments are disposed within the through hole of the housing when the filament assembly is disposed within the housing.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joe Griffith Cruz, Hanh Nguyen, Randy Vrana, Karl Armstrong
  • Patent number: 9856185
    Abstract: Methods and apparatus for refining feedstocks, such as crude or synthetic oil, and like feedstocks, are disclosed herein. In some embodiments, a reactor for refining a feedstock includes: a chamber having an inner volume to hold a liquid feedstock, a feedstock inlet port, a process gas inlet port, and an outlet port; a gas diffuser housed within the chamber and coupled to the process gas inlet port; and a radical generator coupled in fluid communication with the inner volume via the gas diffuser. In some embodiments, a method for refining feedstock includes: providing liquid feedstock to an inner volume of a reactor; flowing a radicalized process gas from a radical generator into the inner volume and into contact with the feedstock via a gas diffuser to fractionate the feedstock and produce one or more fractions of product in a vaporous mixture; and collecting a desired product from the vaporous mixture.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: January 2, 2018
    Assignee: LYTOIL, INC.
    Inventors: Joe Griffith Cruz, Scott Ray Mobley, Philip David Fulmer
  • Patent number: 9416450
    Abstract: Embodiments of process chambers and methods for performing HWCVD processes within such process chambers and depositing a thin film from two or more source compounds on a surface of a substrate are provided. In some embodiments, the process chamber includes a showerhead assembly disposed between a metal filament assembly and a substrate processing zone. The showerhead assembly includes a showerhead body and a dual-zone face plate with a plurality of first channels and second channels therein. A first source compound is delivered through the metal filament assembly to form radicals of the first source compound and pass through the first channels into the substrate processing zone without forming any plasma. A second source compound is delivered through the showerhead body into the second channels of the dual-zone face plate without passing through the metal filament assembly and without contacting the radicals until reaching the substrate processing zone.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 16, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hanh D. Nguyen, Joe Griffith Cruz
  • Publication number: 20160107953
    Abstract: Methods and apparatus for refining feedstocks, such as crude or synthetic oil, and like feedstocks, are disclosed herein. In some embodiments, a reactor for refining a feedstock includes: a chamber having an inner volume to hold a liquid feedstock, a feedstock inlet port, a process gas inlet port, and an outlet port; a gas diffuser housed within the chamber and coupled to the process gas inlet port; and a radical generator coupled in fluid communication with the inner volume via the gas diffuser. In some embodiments, a method for refining feedstock includes: providing liquid feedstock to an inner volume of a reactor; flowing a radicalized process gas from a radical generator into the inner volume and into contact with the feedstock via a gas diffuser to fractionate the feedstock and produce one or more fractions of product in a vaporous mixture; and collecting a desired product from the vaporous mixture.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 21, 2016
    Inventors: JOE GRIFFITH CRUZ, SCOTT RAY MOBLEY, PHILIP DAVID FULMER
  • Patent number: 9305838
    Abstract: An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Pravin K. Narwankar, Joe Griffith Cruz, Arvind Sundarrajan, Murali Narasimhan, Subbalakshmi Sreekala, Victor Pushparaj
  • Publication number: 20160005631
    Abstract: Apparatus for coupling a hot wire source to a process chamber is provided herein. In some embodiments, an apparatus for coupling a hot wire source to a process chamber may include: a housing having an open end and a through hole formed through a top and a bottom of the housing; and a filament assembly configured to be disposed within the housing, the filament assembly having a frame and a plurality of filaments disposed across the frame, wherein the plurality of filaments of the filament assembly are substantially parallel with the top and the bottom of the housing and at least a portion of the plurality of filaments are disposed within the through hole of the housing when the filament assembly is disposed within the housing.
    Type: Application
    Filed: March 7, 2014
    Publication date: January 7, 2016
    Inventors: Joe GRIFFITH CRUZ, Hanh NGUYEN, Randy VRANA, Karl ARMSTRONG
  • Publication number: 20150311061
    Abstract: Methods and apparatus for cleaning substrate surfaces are provided herein. In some embodiments, a method of cleaning a surface of a substrate may include providing a hydrogen containing gas to a first chamber having a plurality of filaments disposed therein; flowing a current through the plurality of filaments to raise a temperature of the plurality of filaments to a process temperature sufficient to decompose at least some of the hydrogen containing gas; and cleaning the surface of the substrate by exposing the substrate to hydrogen atoms formed from the decomposed hydrogen containing gas for a period of time.
    Type: Application
    Filed: July 7, 2015
    Publication date: October 29, 2015
    Inventors: JOE GRIFFITH CRUZ, JEONGWON PARK, PRAVIN K. NARWANKAR, NATE SI NGUYEN, HANH NGUYEN, TO CHAN, JINGJING XU
  • Patent number: 8921235
    Abstract: A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Kiran V. Thadani, Jingjing Xu, Abhijit Basu Mallick, Joe Griffith Cruz, Nitin K. Ingle, Pravin K. Narwankar
  • Publication number: 20140248754
    Abstract: A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 4, 2014
    Inventors: Kiran V. Thadani, Jingjing Xu, Abhijit Basu Mallick, Joe Griffith Cruz, Nitin K. Ingle, Pravin K. Narwankar
  • Publication number: 20140179110
    Abstract: Methods and apparatus for processing a germanium containing material, a III-V compound containing material, or a II-VI compound containing material disposed on a substrate using a hot wire source are provided herein. In some embodiments, a method for processing a material disposed on a substrate, wherein the material is at least one of a germanium containing material, a III-V compound containing material, or a II-VI compound containing material, includes providing a hydrogen containing gas to a first process chamber having a plurality of filaments; flowing a current through the plurality of filaments to raise a temperature of the plurality of filaments to a first temperature sufficient to decompose at least a portion of the hydrogen containing gas to form hydrogen atoms; and treating a surface of an exposed material on a substrate by exposing the material to hydrogen atoms formed by the decomposition of the hydrogen containing gas.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 26, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JEONGWON PARK, JOE GRIFFITH CRUZ, PRAVIN K. NARWANKAR
  • Publication number: 20140162194
    Abstract: Methods and apparatus for forming a sacrificial during a novel process sequence of lithography and photoresist patterning are provided. In one embodiment, a method of processing a substrate having a resist material and an anti-reflective coating material thereon includes depositing an organic polymer layer over the surface of the substrate inside a process chamber using a CVD technique. The CVD technique includes flowing a monomer into a processing region of the process chamber, flowing an initiator into the processing region through one or more filament wires heated to a temperature between about 200° C. and about 450° C., and forming the organic polymer layer. In addition, the organic polymer layer is ashable and can be removed from the surface of the substrate when the resist material is removed from the surface of the substrate.
    Type: Application
    Filed: May 17, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jingjing XU, Joe Griffith CRUZ, Pramit MANNA, Deenesh PADHI, Bok Hoen KIM, Barry L. CHIN
  • Patent number: 8709537
    Abstract: Methods for depositing films using hot wire chemical vapor deposition (HWCVD) processes are provided herein. In some embodiments, a method of operating an HWCVD tool may include providing hydrogen gas (H2) to a filament disposed in a process chamber of the HWCVD tool for a first period of time; and flowing current through the filament to raise the temperature of the filament to a first temperature after the first period of time.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: April 29, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Bipin Thakur, Joe Griffith Cruz, Stefan Keller, Vikas Gujar, Ravindra Janu Patil