Patents by Inventor Joe Mullis

Joe Mullis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180240006
    Abstract: A Non-transferable Radio Frequency Identification (RFID) assembly for attachment to an article comprises a RFID module; and a antenna module coupled with the RFID module, the antenna module comprising a conductive layer, a substrate, and an adhesive modification layer between the conductive layer and the substrate, the adhesive modification layer configured such that when the assembly is attached to the article and attempt to remove the assembly will cause the substrate to release and leave the conductive layer intact.
    Type: Application
    Filed: April 19, 2018
    Publication date: August 23, 2018
    Inventors: Joe Mullis, Steve Gonzalez, Emily Olanoff
  • Patent number: 10049510
    Abstract: Embodiments described herein provide various examples of a low cost, low power, fully automated, unobtrusive, and vehicle-independent radio frequency (RF) communication device to be plugged into a standard on-board diagnostic (OBD) port inside a vehicle to access OBD diagnostic data. According to one aspect, an OBD device for a vehicle is disclosed. This OBD device includes: an OBD adapter configured to be plugged into an OBD port of a vehicle and a first RFID module electrically coupled to the OBD adapter. The first RFID module is further configured to receive OBD data of a vehicle from an associated OBD port via the OBD adapter and communicate at least a portion of the received OBD data to a first RFID reader when the first RFID module is queried by the first RFID reader.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: August 14, 2018
    Assignee: NEOLOGY, INC.
    Inventors: Sheshi Nyalamadugu, Joe Mullis, Alexander Boellaard, Birektawit Waktola, Raymond Freeman
  • Patent number: 10029650
    Abstract: A license plate validation system for a vehicle is disclosed. This license plate validation system includes: a radio frequency identification (RFID) reader located inside the vehicle and configured to read from an RFID-enabled license plate on the vehicle upon detecting an attempt to start the vehicle; and a microcontroller coupled to the RFID reader and configured to receive, from the RFID reader, information obtained from the RFID-enabled license plate and subsequently determine, based at least on the received information, whether the vehicle is properly registered. In some embodiments, the microcontroller and the RFID reader are integrated as a single electronic module.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 24, 2018
    Assignee: Neology, Inc.
    Inventors: Sheshi Nyalamadugu, Joe Mullis, Bobby Leanio
  • Patent number: 10032108
    Abstract: In the embodiments described herein, a RFID enabled license plate is constructed by using the license plate, or a retro-reflective layer formed thereon as part of the resonator configured to transmit signals generated by and RFID chip integrated with the license plate. Such an RFID enabled license plate can include a metal license plate with a slot formed in the metal license plate, and a RFID tag module positioned in the slot. The RFID tag module can include a chip and a loop, and the loop can be coupled with the metal license plate, e.g., via inductive or conductive coupling. In this manner, the metal license plate can be configured to act as a resonator providing increased performance.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 24, 2018
    Assignee: Neology, Inc.
    Inventors: Jeffrey Zhu, Chih-chuan Yen, Jason Liu, Joe Mullis
  • Patent number: 9996791
    Abstract: A radio frequency identification (RFID) enabled mirror includes a mirror comprising a reflective layer. The reflective layer comprises at least one layer of a metallic material. At least one portion of the reflective layer is removed to form a booster antenna from a remaining portion of the reflective layer. A dielectric coating is applied to the mirror where the reflective layer was removed. The RFID-enabled mirror further includes an RFID chip coupled to the booster antenna.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 12, 2018
    Assignee: Neology, Inc.
    Inventors: Sheshi Nyalamadugu, Joe Mullis
  • Patent number: 9978012
    Abstract: A Non-transferable Radio Frequency Identification (RFID) assembly for attachment to an article comprises a RFID module; and a antenna module coupled with the RFID module, the antenna module comprising a conductive layer, a substrate, and an adhesive modification layer between the conductive layer and the substrate, the adhesive modification layer configured such that when the assembly is attached to the article and attempt to remove the assembly will cause the substrate to release and leave the conductive layer intact.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 22, 2018
    Assignee: NEOLOGY, INC.
    Inventors: Joe Mullis, Steve Gonzalez, Emily Olanoff
  • Publication number: 20180108006
    Abstract: An account is managed using information read from a dual frequency transponder. Information stored on the dual frequency transponder can be read by a NFC-enabled device and by a UHF RFID reader. The information links, corresponds, or otherwise provides access to account information stored at a remote server. For example, a NFC-enabled device can read the information from the dual frequency transponder and use that information to enable instant and on-the-spot recharging of a toll account. In addition, a UHF RFID toll reader can scan information from the dual frequency transponder and use that information to debit toll charges from the correct toll account. The dual frequency transponder can be embedded in a license plate and read using a reader placed in the road. Additionally, the transponder can be configured to function at the correct frequency only when a valid vehicle registration sticker is applied to the license plate.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Francisco Martinez de Velasco Cortina, Joe Mullis, Manfred Rietzler, Sheshi Nyalamadugu, Rodolfo Monsalvo
  • Publication number: 20180005098
    Abstract: Various embodiments of RFID switch devices are disclosed herein. Such RFID switch devices advantageously enable manual activation/deactivation of the RF module. The RFID switch device may include a RF module with an integrated circuit adapted to ohmically connect to a substantially coplanar conductive trace pattern, as well as booster antenna for extending the operational range of the RFID device. The operational range of the RFID switch device may be extended when a region of the booster antenna overlaps a region of the conductive trace pattern on the RF module via inductive or capacitive coupling. The RFID switch device may further include a visual indicator displaying a first color if the RFID switch device is in an active state and/or a second color if the RFID switch device is in an inactive state.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 4, 2018
    Inventors: Joe MULLIS, Sheshi NYALAMADUGU
  • Publication number: 20180005099
    Abstract: Various embodiments of RFID switch devices are disclosed herein. Such RFID switch devices advantageously enable manual activation/deactivation of the RF module. The RFID switch device may include a RF module with an integrated circuit adapted to ohmically connect to a substantially coplanar conductive trace pattern, as well as booster antenna for extending the operational range of the RFID device. The operational range of the RFID switch device may be extended when a region of the booster antenna overlaps a region of the conductive trace pattern on the RF module via inductive or capacitive coupling. In some embodiments, all or a portion of the booster antenna may at least partially shield the RF module when the RFID switch device is in an inactive state.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 4, 2018
    Inventors: Joe MULLIS, Sheshi NYALAMADUGU
  • Publication number: 20170369033
    Abstract: A license plate validation system for a vehicle is disclosed. This license plate validation system includes: a radio frequency identification (RFID) reader located inside the vehicle and configured to read from an RFID-enabled license plate on the vehicle upon detecting an attempt to start the vehicle; and a microcontroller coupled to the RFID reader and configured to receive, from the RFID reader, information obtained from the RFID-enabled license plate and subsequently determine, based at least on the received information, whether the vehicle is properly registered. In some embodiments, the microcontroller and the RFID reader are integrated as a single electronic module.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 28, 2017
    Inventors: Sheshi NYALAMADUGU, Joe MULLIS, Bobby LEANIO
  • Patent number: 9852421
    Abstract: An account is managed using information read from a dual frequency transponder. Information stored on the dual frequency transponder can be read by a NFC-enabled device and by a UHF RFID reader. The information links, corresponds, or otherwise provides access to account information stored at a remote server. For example, a NFC-enabled device can read the information from the dual frequency transponder and use that information to enable instant and on-the-spot recharging of a toll account. In addition, a UHF RFID toll reader can scan information from the dual frequency transponder and use that information to debit toll charges from the correct toll account. The dual frequency transponder can be embedded in a license plate and read using a reader placed in the road. Additionally, the transponder can be configured to function at the correct frequency only when a valid vehicle registration sticker is applied to the license plate.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 26, 2017
    Assignee: Neology, Inc.
    Inventors: Francisco Martinez de Velasco Cortina, Joe Mullis, Manfred Rietzler, Sheshi Nyalamadugu, Rodolfo Monsalvo
  • Publication number: 20170300802
    Abstract: A radio frequency identification (RFID) enabled mirror includes a mirror comprising a reflective layer. The reflective layer comprises at least one layer of a metallic material. At least one portion of the reflective layer is removed to form a booster antenna from a remaining portion of the reflective layer. A dielectric coating is applied to the mirror where the reflective layer was removed. The RFID-enabled mirror further includes an RFID chip coupled to the booster antenna.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 19, 2017
    Inventors: Sheshi Nyalamadugu, Joe Mullis
  • Publication number: 20170286822
    Abstract: Techniques, systems, and devices are disclosed for the design and manufacturing of a radio-frequency identification (RFID)-enabled license plate. In one aspect, a proposed RFID-enabled license plate includes a metal plate and a RFID assembly integrated with the metal plate. The RFID assembly further includes a front cover attached to a first side of the metal plate and a back cover attached to a back side of the metal plate opposite to the front cover, and the front cover and the back cover substantially overlap with each other. The RFID assembly additionally includes a RFID tag sandwiched between the front cover and the back cover and is affixed to at least one of the front cover and the back cover. As such, the RFID tag is substantially tamper-proof.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Inventors: Sheshi Nyalamadugu, Joe Mullis
  • Publication number: 20170284130
    Abstract: Systems and methods for a tamper-evident cargo container seal bolt lock are disclosed herein. The device can include a bolt member having a conductive medium running the axial length of the bolt, and a receiving member for locking the bolt into place. A battery-driven sensory circuit including a memory means, a processor, and a timing circuit can be disposed within the receiving member such that a continuous circuit is formed from one circuit pin over the conductive medium through the length of the bolt and back to a second pin. The sensory circuit is configured to sense whether the circuit has been interrupted (e.g., if the bolt has been cut). In the event of an interruption, the circuit can record the time and/or date in memory. This information can then be transmitted to an RFID reader/interrogator if a dispute arises as to when the lock had been broken.
    Type: Application
    Filed: June 9, 2017
    Publication date: October 5, 2017
    Applicant: NEOLOGY, INC.
    Inventors: Joe Mullis, James Robert Kruest
  • Patent number: 9767404
    Abstract: Various embodiments of RFID switch devices are disclosed herein. Such RFID switch devices advantageously enable manual activation/deactivation of the RF module. The RFID switch device may include a RF module with an integrated circuit adapted to ohmically connect to a substantially coplanar conductive trace pattern, as well as booster antenna for extending the operational range of the RFID device. The operational range of the RFID switch device may be extended when a region of the booster antenna overlaps a region of the conductive trace pattern on the RF module via inductive or capacitive coupling. The RFID switch device may further include a visual indicator displaying a first color if the RFID switch device is in an active state and/or a second color if the RFID switch device is in an inactive state.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 19, 2017
    Assignee: Neology, Inc.
    Inventors: Joe Mullis, Sheshi Nyalamadugu
  • Patent number: 9764715
    Abstract: A license plate validation system for a vehicle is disclosed. This license plate validation system includes: a radio frequency identification (RFID) reader located inside the vehicle and configured to read from an RFID-enabled license plate on the vehicle upon detecting an attempt to start the vehicle; and a microcontroller coupled to the RFID reader and configured to receive, from the RFID reader, information obtained from the RFID-enabled license plate and subsequently determine, based at least on the received information, whether the vehicle is properly registered. In some embodiments, the microcontroller and the RFID reader are integrated as a single electronic module.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: September 19, 2017
    Assignee: NEOLOGY, INC.
    Inventors: Sheshi Nyalamadugu, Joe Mullis, Bobby Leanio
  • Patent number: 9767403
    Abstract: Various embodiments of RFID switch devices are disclosed herein. Such RFID switch devices advantageously enable manual activation/deactivation of the RF module. The RFID switch device may include a RF module with an integrated circuit adapted to ohmically connect to a substantially coplanar conductive trace pattern, as well as booster antenna for extending the operational range of the RFID device. The operational range of the RFID switch device may be extended when a region of the booster antenna overlaps a region of the conductive trace pattern on the RF module via inductive or capacitive coupling. In some embodiments, all or a portion of the booster antenna may at least partially shield the RF module when the RFID switch device is in an inactive state.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: September 19, 2017
    Assignee: Neology, Inc.
    Inventors: Joe Mullis, Sheshi Nyalamadugu
  • Publication number: 20170200401
    Abstract: Systems and methods for a tamper-evident cargo container seal bolt lock are disclosed herein. The device can include a receiving member, a conductive bolt member adapted to be snap-locked into the receiving member, and a plastic encapsulant which tethers the bolt member to the receiving member. The encapsulant can contain an electrically conductive medium, such as a wire, which runs from the receiving member to the second end of the bolt. A sensory circuit disposed within the receiving member can be configured to sense whether the circuit has been interrupted (e.g., if the bolt has been cut). In the event of an interruption, the circuit can record the present time and/or date in memory. An RFID transponder disposed within the encapsulant or the receiving member can then transmit the recorded date/time to an RFID interrogator if a dispute subsequently arises as to when the lock had been broken.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 13, 2017
    Inventors: Joe Mullis, James Robert Kruest
  • Patent number: 9691014
    Abstract: Techniques, systems, and devices are disclosed for the design and manufacturing of a radio-frequency identification (RFID)-enabled license plate. In one aspect, a proposed RFID-enabled license plate includes a metal plate and a RFID assembly integrated with the metal plate. The RFID assembly further includes a front cover attached to a first side of the metal plate and a back cover attached to a back side of the metal plate opposite to the front cover, and the front cover and the back cover substantially overlap with each other. The RFID assembly additionally includes a RFID tag sandwiched between the front cover and the back cover and is affixed to at least one of the front cover and the back cover. As such, the RFID tag is substantially tamper-proof.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: June 27, 2017
    Assignee: NEOLOGY, INC.
    Inventors: Sheshi Nyalamadugu, Joe Mullis
  • Patent number: 9688202
    Abstract: A radio frequency identification (RFID) enabled mirror includes a mirror comprising a reflective layer. The reflective layer comprises at least one layer of a metallic material. At least one portion of the reflective layer is removed to form a booster antenna from a remaining portion of the reflective layer. A dielectric coating is applied to the mirror where the reflective layer was removed. The RFID-enabled mirror further includes an RFID chip coupled to the booster antenna.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 27, 2017
    Assignee: NEOLOGY, INC.
    Inventors: Sheshi Nyalamadugu, Joe Mullis