Patents by Inventor Joe Trogolo

Joe Trogolo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110857
    Abstract: A low noise (1/f) junction field effect transistor (JFET) is disclosed, wherein multiple implants push a conduction path of the transistor away from the surface of a layer upon which the transistor is formed. In this manner, current flow in the conduction path is less likely to be disturbed by defects that may exist at the surface of the layer, thereby mitigating (1/f) noise.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 7, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Imran Khan, Joe Trogolo
  • Publication number: 20100155789
    Abstract: A low noise (1/f) junction field effect transistor (JFET) is disclosed, wherein multiple implants push a conduction path of the transistor away from the surface of a layer upon which the transistor is formed. In this manner, current flow in the conduction path is less likely to be disturbed by defects that may exist at the surface of the layer, thereby mitigating (1/f) noise.
    Type: Application
    Filed: February 26, 2010
    Publication date: June 24, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pinghai Hao, Imran Khan, Joe Trogolo
  • Patent number: 7704813
    Abstract: The present invention provides a high-voltage junction field effect transistor (JFET), a method of manufacture and an integrated circuit including the same. One embodiment of the high-voltage junction field effect transistor (JFET) (300) includes a well region (320) of a first conductive type located within a substrate (318) and a gate region (410) of a second conductive type located within the well region (320), the gate region (410) having a length and a width. This embodiment further includes a source region (710) and a drain region (715) of the first conductive type located within the substrate (318) in a spaced apart relation to the gate region (410) and a doped region (810) of the second conductive type located in the gate region (410) and extending along the width of the gate region (410).
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: April 27, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Kaiyuan Chen, Joe Trogolo, Tathagata Chatterjee, Steve Merchant
  • Patent number: 7670888
    Abstract: Fashioning a low noise (1/f) junction field effect transistor (JFET) is disclosed, where multiple implants are performed to push a conduction path of the transistor away from the surface of a layer upon which the transistor is formed. In this manner, current flow in the conduction path is less likely to be disturbed by defects that may exist at the surface of the layer, thereby mitigating (1/f) noise.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Imran Khan, Joe Trogolo
  • Publication number: 20080251818
    Abstract: Fashioning a low noise (1/f) junction field effect transistor (JFET) is disclosed, where multiple implants are performed to push a conduction path of the transistor away from the surface of a layer upon which the transistor is formed. In this manner, current flow in the conduction path is less likely to be disturbed by defects that may exist at the surface of the layer, thereby mitigating (1/f) noise.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 16, 2008
    Inventors: Pinghai Hao, Imran Khan, Joe Trogolo
  • Publication number: 20080090346
    Abstract: The present invention provides a high-voltage junction field effect transistor (JFET), a method of manufacture and an integrated circuit including the same. One embodiment of the high-voltage junction field effect transistor (JFET) (300) includes a well region (320) of a first conductive type located within a substrate (318) and a gate region (410) of a second conductive type located within the well region (320), the gate region (410) having a length and a width. This embodiment further includes a source region (710) and a drain region (715) of the first conductive type located within the substrate (318) in a spaced apart relation to the gate region (410) and a doped region (810) of the second conductive type located in the gate region (410) and extending along the width of the gate region (410).
    Type: Application
    Filed: November 1, 2007
    Publication date: April 17, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Kaiyuan Chen, Joe Trogolo, Tathagata Chatterjee, Steve Merchant
  • Patent number: 7312481
    Abstract: The present invention provides a high-voltage junction field effect transistor (JFET), a method of manufacture and an integrated circuit including the same. One embodiment of the high-voltage junction field effect transistor (JFET) (300) includes a well region (320) of a first conductive type located within a substrate (318) and a gate region (410) of a second conductive type located within the well region (320), the gate region (410) having a length and a width. This embodiment further includes a source region (710) and a drain region (715) of the first conductive type located within the substrate (318) in a spaced apart relation to the gate region (410) and a doped region (810) of the second conductive type located in the gate region (410) and extending along the width of the gate region (410).
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: December 25, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Kaiyuan Chen, Joe Trogolo, Tathagata Chatterjee, Steve Merchant
  • Publication number: 20070205435
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Patent number: 7226835
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: June 5, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Publication number: 20060071247
    Abstract: The present invention provides a high-voltage junction field effect transistor (JFET), a method of manufacture and an integrated circuit including the same. One embodiment of the high-voltage junction field effect transistor (JFET) (300) includes a well region (320) of a first conductive type located within a substrate (318) and a gate region (410) of a second conductive type located within the well region (320), the gate region (410) having a length and a width. This embodiment further includes a source region (710) and a drain region (715) of the first conductive type located within the substrate (318) in a spaced apart relation to the gate region (410) and a doped region (810) of the second conductive type located in the gate region (410) and extending along the width of the gate region (410).
    Type: Application
    Filed: October 1, 2004
    Publication date: April 6, 2006
    Applicant: Texas Instruments Incorporated
    Inventors: Kaiyuan Chen, Joe Trogolo, Tathagata Chatterjee, Steve Merchant
  • Publication number: 20050127409
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Application
    Filed: January 25, 2005
    Publication date: June 16, 2005
    Inventors: Henry Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland
  • Publication number: 20050087812
    Abstract: An interfacial oxide layer (185) is formed in the emitter regions of the NPN transistor (280, 220) and the PNP transistor (290, 200). Fluorine is selectively introduced into the polysilicon emitter region of the NPN transistor (220) to reduce the 1/f noise in the NPN transistor.
    Type: Application
    Filed: November 22, 2004
    Publication date: April 28, 2005
    Inventors: Joe Trogolo, William Loftin, William Kyser
  • Patent number: 6867100
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 15, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Henry L. Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland
  • Publication number: 20040007716
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Joe Trogolo, Tathagata Chatterlee, Lily Springer, Jeff Smith
  • Publication number: 20030151089
    Abstract: The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
    Type: Application
    Filed: December 19, 2002
    Publication date: August 14, 2003
    Inventors: Henry L. Edwards, Sameer Pendharkar, Joe Trogolo, Tathagata Chatterjee, Taylor Efland