Patents by Inventor Joel A. Alexa

Joel A. Alexa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240026516
    Abstract: Methods for making layered materials and layered materials including high atomic number metals and metal alloys adhered to surfaces are provided. Such surfaces may be oxygen or hydroxyl rich surfaces. Certain methods include depositing a tie down layer of a first metal or metal alloy particles onto a first surface of base material and depositing a high atomic number metal or metal alloy layer onto the first surface after depositing the tie down layer, wherein particles comprising the high atomic number metal or metal alloy layer have a higher atomic number than the first metal or metal alloy particles.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: DONALD L. THOMSEN, III, SANKARA N. SANKARAN, JOEL A. ALEXA
  • Patent number: 11795536
    Abstract: Methods for making layered materials and layered materials including high atomic number metals and metal alloys adhered to surfaces are provided. Such surfaces may be oxygen or hydroxyl rich surfaces. Certain methods include depositing a tie down layer of a first metal or metal alloy particles onto a first surface of base material and depositing a high atomic number metal or metal alloy layer onto the first surface after depositing the tie down layer, wherein particles comprising the high atomic number metal or metal alloy layer have a higher atomic number than the first metal or metal alloy particles.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 24, 2023
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald L. Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Patent number: 11724834
    Abstract: In some aspects, this disclosure relates to improved Z-grade materials, such as those used for shielding, systems incorporating such materials, and processes for making such Z-grade materials. In some examples, the Z-grade material includes a diffusion zone including mixed metallic alloy material with both a high atomic number material and a lower atomic number material. In certain examples, a process for making Z-grade material includes combining a high atomic number material and a low atomic number material, and bonding the high atomic number material and the low atomic number together using diffusion bonding. The processes may include vacuum pressing material at an elevated temperature, such as a temperature near a softening or melting point of the low atomic number material. In another aspect, systems such as a vault or an electronic enclosure are disclosed, where one or more surfaces of Z-grade material make up part or all of the vault/enclosure.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: August 15, 2023
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald L. Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Patent number: 11578395
    Abstract: The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment (“IAT”) after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 14, 2023
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATION OF NASA
    Inventors: Stephen J. Hales, Harold D Claytor, Joel A. Alexa
  • Publication number: 20210360841
    Abstract: Aspects relate to building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 18, 2021
    Inventors: DONALD L. THOMSEN, III, ROBERTO J. CANO, BRIAN J. JENSEN, STEPHEN J. HALES, JOEL A. ALEXA
  • Patent number: 11076516
    Abstract: Aspects relate to methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 27, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald L. Thomsen, III, Roberto J. Cano, Brian J. Jensen, Stephen J. Hales, Joel A. Alexa
  • Patent number: 11052458
    Abstract: Various embodiments provide methods in which a metal matrix composite (MMC) material is incorporated into a metallic structure during a one-step near-net-shape structural forming process. Various embodiments provide in-situ selective reinforcement processes in which the MMC may be pre-placed on a forming tool in locations that correspond to specific regions in the metallic structure. Various embodiment near-net-shape structural forming processes may then be executed and result in various embodiment metallic structural components with selectively-reinforced regions that provide enhanced mechanical properties in key locations.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: July 6, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Richard Keith Bird, Joel A. Alexa, Peter L. Messick, Marcia S. Domack, John A. Wagner
  • Publication number: 20210188464
    Abstract: In some aspects, this disclosure relates to improved Z-grade materials, such as those used for shielding, systems incorporating such materials, and processes for making such Z-grade materials. In some examples, the Z-grade material includes a diffusion zone including mixed metallic alloy material with both a high atomic number material and a lower atomic number material. In certain examples, a process for making Z-grade material includes combining a high atomic number material and a low atomic number material, and bonding the high atomic number material and the low atomic number together using diffusion bonding. The processes may include vacuum pressing material at an elevated temperature, such as a temperature near a softening or melting point of the low atomic number material. In another aspect, systems such as a vault or an electronic enclosure are disclosed, where one or more surfaces of Z-grade material make up part or all of the vault/enclosure.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 24, 2021
    Inventors: Donald L. Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Patent number: 10919650
    Abstract: In some aspects, this disclosure relates to improved Z-grade materials, such as those used for shielding, systems incorporating such materials, and processes for making such Z-grade materials. In some examples, the Z-grade material includes a diffusion zone including mixed metallic alloy material with both a high atomic number material and a lower atomic number material. In certain examples, a process for making Z-grade material includes combining a high atomic number material and a low atomic number material, and bonding the high atomic number material and the low atomic number together using diffusion bonding. The processes may include vacuum pressing material at an elevated temperature, such as a temperature near a softening or melting point of the low atomic number material. In another aspect, systems such as a vault or an electronic enclosure are disclosed, where one or more surfaces of Z-grade material make up part or all of the vault/enclosure.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 16, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald L. Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Publication number: 20210025047
    Abstract: Methods for making layered materials and layered materials including high atomic number metals and metal alloys adhered to surfaces are provided. Such surfaces may be oxygen or hydroxyl rich surfaces. Certain methods include depositing a tie down layer of a first metal or metal alloy particles onto a first surface of base material and depositing a high atomic number metal or metal alloy layer onto the first surface after depositing the tie down layer, wherein particles comprising the high atomic number metal or metal alloy layer have a higher atomic number than the first metal or metal alloy particles.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 28, 2021
    Inventors: Donald L. Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Publication number: 20190256228
    Abstract: In some aspects, this disclosure relates to improved Z-grade materials, such as those used for shielding, systems incorporating such materials, and processes for making such Z-grade materials. In some examples, the Z-grade material includes a diffusion zone including mixed metallic alloy material with both a high atomic number material and a lower atomic number material. In certain examples, a process for making Z-grade material includes combining a high atomic number material and a low atomic number material, and bonding the high atomic number material and the low atomic number together using diffusion bonding. The processes may include vacuum pressing material at an elevated temperature, such as a temperature near a softening or melting point of the low atomic number material. In another aspect, systems such as a vault or an electronic enclosure are disclosed, where one or more surfaces of Z-grade material make up part or all of the vault/enclosure.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 22, 2019
    Inventors: DONALD L. THOMSEN, III, SANKARA N. SANKARAN, JOEL A. ALEXA
  • Publication number: 20190053407
    Abstract: Disclosed are methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 14, 2019
    Inventors: DONALD L. THOMSEN, III, ROBERTO J. CANO, BRIAN J. JENSEN, STEPHEN J. HALES, JOEL A. ALEXA
  • Publication number: 20190017157
    Abstract: The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment (“TAT”) after the welding step on the article. The TAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 17, 2019
    Inventors: Stephen J. Hales, Harold D. Claytor, Joel A. Alexa
  • Patent number: 10039217
    Abstract: Disclosed are methods of building Z-graded radiation shielding and covers. In one aspect. the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: July 31, 2018
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald Laurence Thomsen, III, Roberto J. Cano, Brian J. Jensen, Stephen J. Hales, Joel A. Alexa
  • Patent number: 9963345
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 8, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei
  • Publication number: 20170032857
    Abstract: In some aspects, this disclosure relates to improved Z-grade materials, such as those used for shielding, systems incorporating such materials, and processes for making such Z-grade materials. In some examples, the Z-grade material includes a diffusion zone including mixed metallic alloy material with both a high atomic number material and a lower atomic number material. In certain examples, a process for making Z-grade material includes combining a high atomic number material and a low atomic number material, and bonding the high atomic number material and the low atomic number together using diffusion bonding. The processes may include vacuum pressing material at an elevated temperature, such as a temperature near a softening or melting point of the low atomic number material. In another aspect, systems such as a vault or an electronic enclosure are disclosed, where one or more surfaces of Z-grade material make up part or all of the vault/enclosure.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 2, 2017
    Inventors: Donald Laurence Thomsen, III, Sankara N. Sankaran, Joel A. Alexa
  • Patent number: 9499882
    Abstract: A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: November 22, 2016
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: Terryl A. Wallace, Stephen W. Smith, Robert S. Piascik, Michael R. Horne, Peter L. Messick, Joel A. Alexa, Edward H. Glaessgen, Benjamin T. Hailer
  • Publication number: 20160228947
    Abstract: Various embodiments provide methods in which a metal matrix composite (MMC) material is incorporated into a metallic structure during a one-step near-net-shape structural forming process. Various embodiments provide in-situ selective reinforcement processes in which the MMC may be pre-placed on a forming tool in locations that correspond to specific regions in the metallic structure. Various embodiment near-net-shape structural forming processes may then be executed and result in various embodiment metallic structural components with selectively-reinforced regions that provide enhanced mechanical properties in key locations.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 11, 2016
    Inventors: Richard Keith Bird, JOEL A. ALEXA, PETER L. MESSICK, MARCIA S. DOMACK, JOHN A. WAGNER
  • Publication number: 20150329948
    Abstract: The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment (“IAT”) after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventors: Stephen J. Hales, Harold D. Claytor, Joel A. Alexa
  • Patent number: 9090950
    Abstract: The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment (“IAT”) after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: July 28, 2015
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stephen J Hales, Harold Dale Claytor, Joel A. Alexa