Patents by Inventor Joel A. Anderson
Joel A. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11957894Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: April 16, 2024Assignee: Medtronic, Inc.Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Patent number: 11957893Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: April 16, 2024Assignee: Medtronic, Inc.Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
-
Publication number: 20240075304Abstract: A medical device includes wake circuitry and telemetry circuitry. The wake circuitry is configured to receive a first set of data from a device associated with the medical device, where the first set of data is received at a frequency band. The wake circuitry is configured to output a set of pulses based on the first set of data. The wake circuitry is configured to detect a data pattern using the set of pulses. The wake circuitry is configured to output an activation signal in response to a determination that the data pattern satisfies a data pattern requirement. The telemetry circuitry is configured to output a second set of data in response to receiving the activation signal. The second set of data is transmitted at the frequency band. The telemetry circuitry is configured to establish a communication session with the device using the second set of data.Type: ApplicationFiled: September 6, 2023Publication date: March 7, 2024Inventors: Ashutosh Mehra, Nathan A. Torgerson, Venkat R. Gaddam, Arthur K. Lai, Bernard P. Bechara, Joel A. Anderson, Brent P. Johnson, Trevor D. Webster, Mandla T. Shongwe, Cesar G. Moran, Charles M. Nowell, Jr.
-
Publication number: 20240001128Abstract: An example system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to receive, with the telemetry circuitry, an advertisement from the medical device. The advertisement includes connection parameters for a potential communication session with the medical device and an indication that the medical device is connected by an established communication session between the medical device and a connected device. The processing circuitry is further configured to identify the connected device using the indication of the advertisement, initiate a communication session between the telemetry circuitry and the connected device, and output, with the telemetry circuitry and using the communication session between the telemetry circuitry and the connected device, a request for information from the medical device.Type: ApplicationFiled: June 26, 2023Publication date: January 4, 2024Inventors: Ashutosh Mehra, Venkat R. Gaddam, Nathan A. Torgerson, Bernard P. Bechara, Joel A. Anderson, Arthur K. Lai, Brent P. Johnson, Trevor D. Webster
-
Publication number: 20230264014Abstract: A system for providing therapy to a patient includes stimulation generation circuitry, sensing circuitry, and processing circuitry. The processing circuitry is configured to cause storage of a first voltage at a first terminal at a first calibration capacitor and storage of a second voltage at a second terminal at a second calibration capacitor. The processing circuitry is configured to switch out a first calibration switch to prevent the first voltage stored at the first calibration capacitor from changing and switch out a second calibration switch to prevent the second voltage stored at the second calibration capacitor from changing and determine, with the sensing circuitry, a sensing signal based on the first voltage offset by a first calibration voltage stored by the first capacitor and based on the second voltage offset by a second calibration voltage stored by the second capacitor.Type: ApplicationFiled: January 30, 2023Publication date: August 24, 2023Inventors: Robert A. Corey, Joel A. Anderson, David A. Dinsmoor, Kristin N. Hageman, Scott R. Stanslaski, Todd V. Smith, Heba Tareq Omar
-
Patent number: 11730949Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: August 22, 2023Assignee: Medtronic, Inc.Inventors: Erik R. Scott, John E. Kast, Xuan K. Wei, Todd V. Smith, Joel A. Anderson, Forrest C. M. Pape, Duane L. Bourget, Timothy J. Denison, David A. Dinsmoor, Randy S. Roles, Stephen J. Roddy
-
Publication number: 20230201575Abstract: In one example, a system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to determine connection parameters for a connection between the medical device and the external device based on one or more of first information detected by the external device or second information detected by the medical device. The processing circuitry is further configured to output an advertisement for the connection between the medical device and the external device based on the connection parameters and establish the connection between the medical device and the external device according to advertisement.Type: ApplicationFiled: December 21, 2022Publication date: June 29, 2023Inventors: Nathan A. Torgerson, Ashutosh Mehra, Brent P. Johnson, Joel A. Anderson, Venkat R. Gaddam, Arthur K. Lai, Trevor D. Webster, Bernard P. Bechara
-
Publication number: 20230209444Abstract: In one example, a system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to determine an advertising interval for communication between the external device and the medical device based on sensor information from the external device. The processing circuitry is further configured to configure the medical device to advertise at the determined advertising interval.Type: ApplicationFiled: December 21, 2022Publication date: June 29, 2023Inventors: Nathan A. Torgerson, Ashutosh Mehra, Brent P. Johnson, Joel A. Anderson, Venkat R. Gaddam, Arthur K. Lai, Trevor D. Webster, Bernard P. Bechara
-
Patent number: 11672969Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.Type: GrantFiled: August 25, 2020Date of Patent: June 13, 2023Assignee: Medtronic, Inc.Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Publication number: 20220409907Abstract: An example medical device includes a battery configured to provide power to the medical device and stimulation circuitry configured to generate an electrical stimulation signal. The medical device includes hibernation control circuitry configured to cause the medical device to enter a hibernation mode in response to a hibernation trigger and exit the hibernation mode in response to a wake-up trigger. The medical device includes a switch configured to open in response to the hibernation control circuitry causing the medical device to enter a hibernation mode and close in response to the hibernation control circuitry causing the medical device to exit the hibernation mode and isolation interface circuitry configured to prevent power leakage from the hibernation control circuitry to the stimulation circuitry when the medical device is in hibernation mode. The stimulation circuitry is not powered by the battery when the medical device is in the hibernation mode.Type: ApplicationFiled: June 28, 2022Publication date: December 29, 2022Inventors: Joel A. Anderson, Robert A. Corey, Gregory J. Loxtercamp, Forrest C.M. Pape
-
Publication number: 20210338929Abstract: Embodiments of the present disclosure provide a system and method configured to provide feedback to a user during a refill procedure for an implantable medical device via an external refilling apparatus through the use of resilient tactile feedback element within the refill port chamber that provides tactile feedback to a user of a refill needle of a location of the needle within the refill port.Type: ApplicationFiled: May 1, 2020Publication date: November 4, 2021Inventors: Nicholas R. Whitehead, Peter J. Larson, Christopher H. Rogers, Amanda A. Nowacki, Marc A. Crepeau, Joel A. Anderson, Forrest C.M. Pape, Elizabeth A. Fehrmann, Brandon J. Johnson, Luis Fesser
-
Patent number: 11116124Abstract: An offset arm for a tractor is provided. The offset arm includes a front hitch, a rear hitch, and a rigid connecting structure coupling the front hitch to the rear hitch. The offset arm also includes a front pivot point pivotally connecting the connecting structure to the front hitch about a vertical pivot axis and a rear pivot point pivotally connecting the connecting structure to the rear hitch about a vertical pivot axis. The offset arm also includes a rear pivot lock that selectively locks the rear pivot point to lock the orientation of the rear hitch relative to the connecting structure. The rear pivot lock can selectively lock the rear hitch in any of multiple orientations.Type: GrantFiled: August 29, 2019Date of Patent: September 14, 2021Inventor: Joel A. Anderson
-
Publication number: 20200384259Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: ApplicationFiled: August 25, 2020Publication date: December 10, 2020Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Publication number: 20200384260Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.Type: ApplicationFiled: August 25, 2020Publication date: December 10, 2020Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
-
Publication number: 20200384261Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.Type: ApplicationFiled: August 25, 2020Publication date: December 10, 2020Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Publication number: 20200376259Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.Type: ApplicationFiled: August 25, 2020Publication date: December 3, 2020Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Publication number: 20200376255Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: ApplicationFiled: August 25, 2020Publication date: December 3, 2020Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
-
Publication number: 20200376258Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: ApplicationFiled: August 25, 2020Publication date: December 3, 2020Inventors: Erik R. Scott, John E. Kast, Xuan K. Wei, Todd V. Smith, Joel A. Anderson, Forrest C. M. Pape, Duane L. Bourget, Timothy J. Denison, David A. Dinsmoor, Randy S. Roles, Stephen J. Roddy
-
Publication number: 20200068780Abstract: An offset arm for a tractor is provided. The offset arm includes a front hitch, a rear hitch, and a rigid connecting structure coupling the front hitch to the rear hitch. The offset arm also includes a front pivot point pivotally connecting the connecting structure to the front hitch about a vertical pivot axis and a rear pivot point pivotally connecting the connecting structure to the rear hitch about a vertical pivot axis. The offset arm also includes a rear pivot lock that selectively locks the rear pivot point to lock the orientation of the rear hitch relative to the connecting structure. The rear pivot lock can selectively lock the rear hitch in any of multiple orientations.Type: ApplicationFiled: August 29, 2019Publication date: March 5, 2020Applicant: Consolidated Equipment Group, LLCInventor: Joel A. Anderson
-
Patent number: 10204706Abstract: In one aspect, a programmer for an implantable medical device comprises a user interface that receives user input corresponding to one or more selected stimulation therapy parameters for delivering stimulation therapy to a patient with the implantable medical device and presents an energy consumption estimate of a power source based on the selected stimulation therapy parameters; and a processor that determines one or more programming options that, if selected, would alter the selected stimulation therapy parameters and reduce the energy consumption estimate. The user interface presents at least one of the programming options to reduce the energy consumption estimate to the user with an indication that user selection of one or more of the presented programming options would alter the selected stimulation therapy parameters to reduce energy consumption of the implantable medical device.Type: GrantFiled: April 30, 2010Date of Patent: February 12, 2019Assignee: Medtronic, Inc.Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Shyam Gokaldas, Joel A. Anderson, Leroy L. Perz, Scott E. Straka