Patents by Inventor Joel A. Ronne

Joel A. Ronne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6946212
    Abstract: An electrochemical fuel cell stack with improved reactant manifolding and sealing includes a pair of separator plates interposed between adjacent membrane electrode assemblies. Passageways fluidly interconnecting the anodes to a fuel manifold and interconnecting the cathodes to an oxidant manifold are formed between adjoining non-active surfaces of the pairs of separator plates. The passageways extend through one or more ports penetrating the thickness of one of the plates thereby fluidly connecting the manifold to the opposite active surface of that plate, and the contacted electrode. The non-active surfaces of adjoining separator plates in a fuel cell stack cooperate to provide passageways for directing both reactants from respective stack fuel and oxidant supply manifolds to the appropriate electrodes. The fuel and oxidant reactant streams passageways are fluidly isolated from each other, although they both traverse adjoining non-active surfaces of the same pair of plates.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: September 20, 2005
    Assignee: Ballard Power Systems Inc.
    Inventors: Joel A. Ronne, Boguslaw M. Wozniczka, Clarence Y. Chow, Henry H. Voss
  • Publication number: 20050042497
    Abstract: An electrochemical fuel cell stack with improved reactant manifolding and sealing includes a pair of separator plates interposed between adjacent membrane electrode assemblies. Passageways fluidly interconnecting the anodes to a fuel manifold and interconnecting the cathodes to an oxidant manifold are formed between adjoining non-active surfaces of the pairs of separator plates. The passageways extend through one or more ports penetrating the thickness of one of the plates thereby fluidly connecting the manifold to the opposite active surface of that plate, and the contacted electrode. The non-active surfaces of adjoining separator plates in a fuel cell stack cooperate to provide passageways for directing both reactants from respective stack fuel and oxidant supply manifolds to the appropriate electrodes. The fuel and oxidant reactant streams passageways are fluidly isolated from each other, although they both traverse adjoining non-active surfaces of the same pair of plates.
    Type: Application
    Filed: June 15, 2004
    Publication date: February 24, 2005
    Inventors: Joel Ronne, Boguslaw Wozniczka, Clarence Chow, Henry Voss
  • Patent number: 6783878
    Abstract: Reactant gas supply streams for solid polymer fuel cells may be heated and humidified using heat generated by the fuel cell and water vapor from the fuel cell exhaust. The heat and water vapor in the oxidant exhaust stream are sufficient to heat and humidify a reactant gas supply stream, preferably the oxidant supply stream. The heating and humidifying can be accomplished by flowing a reactant gas supply stream and a fuel cell exhaust gas stream on opposite sides of a water permeable membrane in a combined heat and humidity exchange apparatus. The method and apparatus are particularly suitable for use with air-cooled fuel cell systems and systems which employ near ambient pressure air as the oxidant gas supply.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: August 31, 2004
    Assignee: Ballard Power Systems Inc.
    Inventors: Henry H. Voss, Russell H. Barton, Brian W. Wells, Joel A. Ronne, Harald Anton Nigsch
  • Patent number: 6764783
    Abstract: An electrochemical fuel cell stack with improved reactant man folding and sealing includes a pair of separator plates interposed between adjacent membrane electrode assemblies. Passageways fluidly interconnecting the anodes to a fuel manifold and interconnecting the cathodes to an oxidant manifold are formed between adjoining non-active surfaces of the pairs of separator plates. The passageways extend through one or more ports penetrating the thickness of one of the plates thereby fluidly connecting the manifold to the opposite active surface of that plate, and the contacted electrode. The non-active surfaces of adjoining separator plates in a fuel cell stack cooperate to provide passageways for directing both reactants from respective stack fuel and oxidant supply manifolds to the appropriate electrodes. The fuel and oxidant reactant streams passageways are fluidly isolated from each other, although they both traverse adjoining non-active surfaces of the same pair of plates.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: July 20, 2004
    Assignee: Ballard Power Systems Inc.
    Inventors: Joel A. Ronne, Boguslaw M. Wozniczka, Clarence Y. Chow, Henry H. Voss
  • Publication number: 20030203246
    Abstract: An electrochemical fuel cell stack with improved reactant man folding and sealing includes a pair of separator plates interposed between adjacent membrane electrode assemblies. Passageways fluidly interconnecting the anodes to a fuel manifold and interconnecting the cathodes to an oxidant manifold are formed between adjoining non-active surfaces of the pairs of separator plates. The passageways extend through one or more ports penetrating the thickness of one of the plates thereby fluidly connecting the manifold to the opposite active surface of that plate, and the contacted electrode. The non-active surfaces of adjoining separator plates in a fuel cell stack cooperate to provide passageways for directing both reactants from respective stack fuel and oxidant supply manifolds to the appropriate electrodes. The fuel and oxidant reactant streams passageways are fluidly isolated from each other, although they both traverse adjoining non-active surfaces of the same pair of plates.
    Type: Application
    Filed: May 14, 2003
    Publication date: October 30, 2003
    Inventors: Joel A. Ronne, Boguslaw M. Wozniczka, Clarence Y. Chow, Henry H. Voss
  • Patent number: 6423439
    Abstract: An improved membrane electrode assembly (“MEA”) comprises coextensive ion exchange membrane and electrode layers and a resilient fluid impermeable integral seal comprising a sealant material impregnated into the porous electrode layers in the sealing regions. The integral seal preferably circumscribes the electrochemically active area of the MEA. The integral seal preferably also extends laterally beyond the edge of the MEA. An integral seal may also be provided around any openings, such as external manifold openings formed outside the MEA. Preferably, the uncured sealant material is a flow processable elastomer applied using an injection molding process. In preferred embodiments the seal has a plurality of spaced, parallel raised ribs with cross-ribs extending therebetween at spaced intervals. The raised ribs and cross-ribs provide compartmentalized seals that provide improved protection against fluid leaks.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: July 23, 2002
    Assignee: Ballard Power Systems Inc.
    Inventors: Russell H. Barton, Peter R. Gibb, Joel A. Ronne, Henry H. Voss
  • Patent number: 6416895
    Abstract: Reactant gas supply streams for solid polymer fuel cells may be heated and humidified using heat generated by the fuel cell and water vapor from the fuel cell exhaust. The heat and water vapor in the oxidant exhaust stream are sufficient to heat and humidify a reactant gas supply stream, preferably the oxidant supply stream. The heating and humidifying can be accomplished by flowing a reactant gas supply stream and a fuel cell exhaust gas stream on opposite sides of a water permeable membrane in a combined heat and humidity exchange apparatus. The method and apparatus are particularly suitable for use with air-cooled fuel cell systems and systems which employ near ambient pressure air as the oxidant gas supply.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: July 9, 2002
    Assignee: Ballard Power Systems Inc.
    Inventors: Henry H. Voss, Russell H. Barton, Brian W. Wells, Joel A. Ronne, Harald Anton Nigsch
  • Publication number: 20020058168
    Abstract: Reactant gas supply streams for solid polymer fuel cells may be heated and humidified using heat generated by the fuel cell and water vapor from the fuel cell exhaust. The heat and water vapor in the oxidant exhaust stream are sufficient to heat and humidify a reactant gas supply stream, preferably the oxidant supply stream. The heating and humidifying can be accomplished by flowing a reactant gas supply stream and a fuel cell exhaust gas stream on opposite sides of a water permeable membrane in a combined heat and humidity exchange apparatus. The method and apparatus are particularly suitable for use with air-cooled fuel cell systems and systems which employ near ambient pressure air as the oxidant gas supply.
    Type: Application
    Filed: December 19, 2001
    Publication date: May 16, 2002
    Inventors: Henry H. Voss, Russell H. Barton, Brian W. Wells, Joel A. Ronne, Harald Anton Nigsch
  • Patent number: 6190793
    Abstract: An electrochemical fuel cell stack with an improved compression assembly comprises a tension member which is electrically non-conductive and preferably non-metallic. The tension member can be made from a composite material which has similar expansion and contraction properties as the stack materials, thereby reducing undesirable fluctuations in the compressive force applied to the stack. An improved apparatus for securing the improved tension member to the rest of the compression assembly is also provided. Preferred embodiments of an improved compression assembly employ a collet and wedges to grip the tension member and compress a resilient member which imparts a tensile force to the tension member and a compressive force to the fuel cell assemblies. In other embodiments, an improved compression assembly employs a unitary resilient member and fastener in combination with a tension member.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: February 20, 2001
    Assignee: Ballard Power Systems Inc.
    Inventors: Russell H. Barton, Joel A. Ronne, Henry H. Voss
  • Patent number: 6171374
    Abstract: An improved plate-and-frame assembly selectively transfers a fluid component from one fluid stream to another fluid stream. In a preferred embodiment, a plate-and-frame humidity exchanger with unitary plates and seals transfers water vapor and heat between two fluid streams.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: January 9, 2001
    Assignee: Ballard Power Systems Inc.
    Inventors: Russell H. Barton, Brian Wells, Joel A. Ronne
  • Patent number: 6106964
    Abstract: Reactant gas supply streams for solid polymer fuel cells may be heated and humidified using heat generated by the fuel cell and water vapor from the fuel cell exhaust. The heat and water vapor in the oxidant exhaust stream are sufficient to heat and humidify a reactant gas supply stream, preferably the oxidant supply stream. The heating and humidifying can be accomplished by flowing a reactant gas supply stream and a fuel cell exhaust gas stream on opposite sides of a water permeable membrane in a combined heat and humidity exchange apparatus. The method and apparatus are particularly suitable for use with air-cooled fuel cell systems and systems which employ near ambient pressure air as the oxidant gas supply.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: August 22, 2000
    Assignee: Ballard Power Systems Inc.
    Inventors: Henry H. Voss, Russell H. Barton, Brian W. Wells, Joel A. Ronne, Harald Anton Nigsch
  • Patent number: 6066409
    Abstract: An electrochemical fuel cell stack with improved reactant manifolding and sealing includes a pair of separator plates interposed between adjacent membrane electrode assemblies. Passageways fluidly interconnecting the anodes to a fuel manifold and interconnecting the cathodes to an oxidant manifold are formed between adjoining non-active surfaces of the pairs of separator plates. The passageways extend through one or more ports penetrating the thickness of one of the plates thereby fluidly connecting the manifold to the opposite active surface of that plate, and the contacted electrode. The non-active surfaces of adjoining separator plates in a fuel cell stack cooperate to provide passageways for directing both reactants from respective stack fuel and oxidant supply manifolds to the appropriate electrodes. The fuel and oxidant reactant streams passageways are fluidly isolated from each other, although they both traverse adjoining non-active surfaces of the same pair of plates.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: May 23, 2000
    Assignee: Ballard Power Systems Inc.
    Inventors: Joel A. Ronne, Boguslaw M. Wozniczka, Clarence Y. Chow, Henry H. Voss
  • Patent number: 6057054
    Abstract: An improved membrane electrode assembly ("MEA") comprises coextensive ion exchange membrane and electrode layers and a resilient fluid impermeable integral seal made by impregnating a sealing material into the porous electrode layers in the sealing regions. The integral seal preferably circumscribes the electrochemically active area of the MEA. In addition, the integral seal preferably extends laterally beyond the edge of the MEA, enveloping the peripheral region including the side edge of the MEA. The uncured sealant material is preferably a flow processable elastomer that is applied to the MEA using a vacuum injection molding process. In preferred embodiments, the seal has a plurality of spaced, parallel raised ribs with cross-ribs extending therebetween at spaced intervals. The parallel raised ribs and cross-ribs provide compartmentalized seals that provide improved protection against fluid leaks.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: May 2, 2000
    Assignee: Ballard Power Systems Inc.
    Inventors: Russell H. Barton, Peter R. Gibb, Joel A. Ronne, Henry H. Voss