Patents by Inventor Joel A. Strom

Joel A. Strom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11129577
    Abstract: A device and a system, based upon Deep Optical Scanning (DEOS), for the detection of certain cancers such as breast cancer and the determination of their response to therapy. DEOS is based upon the nonlinear optical interaction of incident laser generated light with tissue. The cancers may either be subsurface or on the surface. The system includes hardware and software components that form subsystems including: an Optical Electronic Subsystem, a Digitization Subsystem, a Parameter Computation Subsystem, an Archive, an Artificial Intelligence Subsystem, and a Presentation Subsystem. The device can be made portable and is non-invasive in its application to a patient. The system can be integrated into a hybrid architecture with other imaging techniques used for the detection of cancers.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: September 28, 2021
    Assignee: Telebyte, INC.
    Inventors: Michael Breneisen, Kenneth S. Schneider, Joel A. Strom, John Murray
  • Publication number: 20170007187
    Abstract: A device and a system, based upon Deep Optical Scanning (DEOS), for the detection of certain cancers such as breast cancer and the determination of their response to therapy. DEOS is based upon the nonlinear optical interaction of incident laser generated light with tissue. The cancers may either be subsurface or on the surface. The system includes hardware and software components that form subsystems including: an Optical Electronic Subsystem, a Digitization Subsystem, a Parameter Computation Subsystem, an Archive, an Artificial Intelligence Subsystem, and a Presentation Subsystem. The device can be made portable and is non-invasive in its application to a patient. The system can be integrated into a hybrid architecture with other imaging techniques used for the detection of cancers.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Applicant: Telebyte, Inc.
    Inventors: Michael Breneisen, Kenneth S. Schneider, Joel A. Strom, John Murray
  • Publication number: 20160235372
    Abstract: A portable device and system, based upon Diffuse Optical Spectroscopy (DOS), for the detection of surface detectable cancers such as breast cancer and the determination of their response to therapy. The system may include hardware and software components that form a number of subsystems: an Optical-Electronic Subsystem, a Digitization Subsystem, an Optical Parameter Computation Subsystem, an Artificial Intelligence Subsystem, and a Presentation Subsystem. The system can be integrated into a hybrid architecture that utilizes other imaging techniques, such as X-ray mammography, for cancer detection.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 18, 2016
    Inventors: Kenneth S. Schneider, Joel Strom, Michael Breneisen
  • Patent number: 8435558
    Abstract: A method of targeted drug delivery and imaging using nonionic surfactant vesicles (niosomes) in combination with ultrasound is presented. Niosomes have potential applications in targeted drug delivery and imaging because of their ability to encapsulate therapeutic agents and their enhanced uptake by physiological membranes. The niosomes may be administered to the subject via catheter. Ultrasound may be used to mediate delivery non-invasively by altering the niosome membrane structure. Niosomes composed of polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were synthesized via a thin film hydration technique and used for encapsulation studies. Carboxyfluorescein dye (CF) was used as a drug model to demonstrate delivery. The amount of dye in the niosomes, the concentration of the vesicles, and their mean particle size after each 5 minute incremental exposure to ultrasound was monitored.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: May 7, 2013
    Assignee: University of South Florida
    Inventors: Elizabeth Hood, Joel A. Strom, Michael VanAuker
  • Patent number: 7981442
    Abstract: A method of targeted drug delivery and imaging using nonionic surfactant vesicles (niosomes) in combination with ultrasound. Niosomes have potential applications in targeted drug delivery and imaging because of their ability to encapsulate therapeutic agents and their enhanced uptake by physiological membranes. Ultrasound may be used to mediate delivery non-invasively by altering the niosome membrane structure. Niosomes composed of polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were synthesized via a thin film hydration technique and used for encapsulation studies. Carboxyfluorescein dye (CF) was used as a drug model to demonstrate delivery. The amount of dye in the niosomes, the concentration of the vesicles, and their mean particle size after each 5 minute incremental exposure to ultrasound was monitored. Dye concentration in niosome samples decreased while the population and size distribution of the niosome remained largely unchanged.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: July 19, 2011
    Assignee: University of South Florida
    Inventors: Elizabeth Hood, Joel A. Strom, Michael VanAuker
  • Publication number: 20060292211
    Abstract: A method of targeted drug delivery and imaging using nonionic surfactant vesicles (niosomes) in combination with ultrasound. Niosomes have potential applications in targeted drug delivery and imaging because of their ability to encapsulate therapeutic agents and their enhanced uptake by physiological membranes. Ultrasound may be used to mediate delivery non-invasively by altering the niosome membrane structure. Niosomes composed of polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were synthesized via a thin film hydration technique and used for encapsulation studies. Carboxyfluorescein dye (CF) was used as a drug model to demonstrate delivery. The amount of dye in the niosomes, the concentration of the vesicles, and their mean particle size after each 5 minute incremental exposure to ultrasound was monitored. Dye concentration in niosome samples decreased while the population and size distribution of the niosome remained largely unchanged.
    Type: Application
    Filed: June 28, 2006
    Publication date: December 28, 2006
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Elizabeth Hood, Joel Strom, Michael VanAuker
  • Patent number: RE44050
    Abstract: The subject invention concerns vascular prosthetic devices and methods for ascending aorta and/or valve replacement in humans and animals. In one embodiment, a device of the invention includes a vessel-like structure having a first end adapted for surgical attachment to a left ventricle, a second end adapted for surgical attachment to an aorta, and, interposed between the first and second ends, a sinus portion configured in the shape of the sinuses of Valsalva in a human aortic valve.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: March 5, 2013
    Assignee: University of South Florida
    Inventors: Joseph A. Knight, Joel A. Strom, Michael D. Van Auker, Leo E. Ondrovic, Karl Muffly, Donald E. McMillan