Patents by Inventor Joel D. Gruhn

Joel D. Gruhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161208
    Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: November 2, 2021
    Inventors: Daniel E. Upton, Joel D. Gruhn
  • Patent number: 10655597
    Abstract: A method of forming a structural element for a wind turbine blade includes fixing a plurality of parallel strength rods to a carrier layer to form a preform layer of material, storing the preform layer in a coiled length, then dispensing the preform layer from the coiled length, partially grinding and then cutting across a width of the preform to form a plurality of cut perform layers, and then stacking them and then fixing them together using a liquid bonding resin material.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: May 19, 2020
    Assignee: SENVION GMBH
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20190091814
    Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.
    Type: Application
    Filed: October 1, 2018
    Publication date: March 28, 2019
    Inventors: Daniel E. Upton, Joel D. Gruhn
  • Patent number: 10137542
    Abstract: An apparatus is disclosed for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a device for receiving coiled lengths of the preform layers of material. The device includes a grinding device to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: November 27, 2018
    Assignee: SENVION GMBH
    Inventors: Daniel E. Upton, Joel D. Gruhn
  • Publication number: 20180274517
    Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 27, 2018
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 9945355
    Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.
    Type: Grant
    Filed: February 28, 2016
    Date of Patent: April 17, 2018
    Assignee: SENVION GMBH
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 9810198
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 7, 2017
    Assignee: SENVION GMBH
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20160333850
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: June 29, 2016
    Publication date: November 17, 2016
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 9429140
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 30, 2016
    Assignee: SENVION GMBH
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 9394882
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 19, 2016
    Assignee: SENVION GMBH
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20160177921
    Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.
    Type: Application
    Filed: February 28, 2016
    Publication date: June 23, 2016
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20150151390
    Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventors: Daniel E. Upton, Joel D. Gruhn
  • Publication number: 20150078911
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 19, 2015
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 8876483
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: November 4, 2014
    Assignee: Neptco, Inc.
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20140090781
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: May 21, 2013
    Publication date: April 3, 2014
    Applicant: NEPTCO, INC.
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20140023514
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 23, 2014
    Applicant: NEPTCO, INC.
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 8540491
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: September 24, 2013
    Assignee: Neptco, Inc.
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20120308394
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Publication number: 20110243750
    Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 6, 2011
    Applicant: Neptco, Inc.
    Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
  • Patent number: 4746767
    Abstract: A shielded electrical cable includes a central conductor wire, a dielectric core over the conductor wire, a metallic foil shielding tape over the dielectric core and an insulated outer jacket over the shielding tape. The shielding tape is wrapped on the dielectric core so that one edge portion of the tape overlaps the opposite edge portion thereof, and it includes a metallic layer and a waterproof adhesive layer on the inner side of the metallic layer. The adhesive layer extends over only preselected portions of the inner side of the metallic layer in the overlapping edge portion of the tape so that a plurality of spaced contact pads are provided on the inner side of the tape wherein the metallic layer is exposed. The adhesive layer bonds and seals the overlapping edge portions of the tape together, and metal-to-metal contact is effected between the inner and outer sides of the metallic layer in the contact pads to reduce radiation leakage between the overlapping edge portions of the tape.
    Type: Grant
    Filed: February 27, 1987
    Date of Patent: May 24, 1988
    Assignee: Neptco Incorporated
    Inventor: Joel D. Gruhn