Patents by Inventor Joel D. Gruhn
Joel D. Gruhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11161208Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.Type: GrantFiled: October 1, 2018Date of Patent: November 2, 2021Inventors: Daniel E. Upton, Joel D. Gruhn
-
Patent number: 10655597Abstract: A method of forming a structural element for a wind turbine blade includes fixing a plurality of parallel strength rods to a carrier layer to form a preform layer of material, storing the preform layer in a coiled length, then dispensing the preform layer from the coiled length, partially grinding and then cutting across a width of the preform to form a plurality of cut perform layers, and then stacking them and then fixing them together using a liquid bonding resin material.Type: GrantFiled: March 7, 2018Date of Patent: May 19, 2020Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20190091814Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.Type: ApplicationFiled: October 1, 2018Publication date: March 28, 2019Inventors: Daniel E. Upton, Joel D. Gruhn
-
Patent number: 10137542Abstract: An apparatus is disclosed for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a device for receiving coiled lengths of the preform layers of material. The device includes a grinding device to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.Type: GrantFiled: February 11, 2015Date of Patent: November 27, 2018Assignee: SENVION GMBHInventors: Daniel E. Upton, Joel D. Gruhn
-
Publication number: 20180274517Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: ApplicationFiled: March 7, 2018Publication date: September 27, 2018Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9945355Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: GrantFiled: February 28, 2016Date of Patent: April 17, 2018Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9810198Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: June 29, 2016Date of Patent: November 7, 2017Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20160333850Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: June 29, 2016Publication date: November 17, 2016Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9429140Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: May 21, 2013Date of Patent: August 30, 2016Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 9394882Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: October 31, 2014Date of Patent: July 19, 2016Assignee: SENVION GMBHInventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20160177921Abstract: A composite beam for a wind turbine blade includes a preform layer, the preform layer including multiple elongate strength rods arranged longitudinally relative to one another in a single layer, each strength rod being disposed adjacent to and spaced from at least one adjacent strength rod. Each strength rod has a rectangular cross section and includes multiple, substantially straight collimated structural fibers fixed in a solidified matrix resin. The preform layer includes at least one carrier layer to which the multiple strength rods are joined by an adhesive. The carrier layer spaces adjacent strength rods a fixed distance apart to facilitate the flow of liquid bonding resin between adjacent strength rods of the preform layer to its joined carrier layer, the carrier layer being of a permeable material suitable to facilitate the flow of liquid bonding resin through the carrier layer.Type: ApplicationFiled: February 28, 2016Publication date: June 23, 2016Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20150151390Abstract: Apparatus for storing, tapering, cutting and dispensing preform layers of material includes a device for storing coiled lengths of the preform layers of material and a mechanism for receiving coiled lengths of the preform layers of material. The mechanism includes a grinding mechanism to grind portions of the preform layers of material and a cutter to cut the grinded portions of material. A programmable controller is configured to control the operations of at least one of the device and mechanism.Type: ApplicationFiled: February 11, 2015Publication date: June 4, 2015Inventors: Daniel E. Upton, Joel D. Gruhn
-
Publication number: 20150078911Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: October 31, 2014Publication date: March 19, 2015Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 8876483Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: September 20, 2013Date of Patent: November 4, 2014Assignee: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20140090781Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: May 21, 2013Publication date: April 3, 2014Applicant: NEPTCO, INC.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20140023514Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: September 20, 2013Publication date: January 23, 2014Applicant: NEPTCO, INC.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 8540491Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: GrantFiled: August 14, 2012Date of Patent: September 24, 2013Assignee: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20120308394Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: August 14, 2012Publication date: December 6, 2012Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Publication number: 20110243750Abstract: Structural preform layers of multiple rigid unidirectional strength elements or rods are constructed and arranged for use in fabricating load-bearing support structures and reinforcements of wind turbine blades. Individual preform layers include multiple elongate unidirectional strength elements or rods arranged in a single layer along a longitudinal axis of the preform layer. Each preform layer includes one or more fibrous carrier layers to which the multiple strength elements or rods are joined and arranged in the single layer. Each strength element or rod is longitudinally oriented and adjacent to other elements or rods. Individual strength elements or rods include a mass of substantially straight unidirectional structural fibers embedded within a matrix resin such that the elements or rods have a substantially uniform distribution of fibers and high degree of fiber collimation.Type: ApplicationFiled: January 14, 2011Publication date: October 6, 2011Applicant: Neptco, Inc.Inventors: Joel D. Gruhn, Ethan Franklin, Kameshwaran Narasimhan
-
Patent number: 4746767Abstract: A shielded electrical cable includes a central conductor wire, a dielectric core over the conductor wire, a metallic foil shielding tape over the dielectric core and an insulated outer jacket over the shielding tape. The shielding tape is wrapped on the dielectric core so that one edge portion of the tape overlaps the opposite edge portion thereof, and it includes a metallic layer and a waterproof adhesive layer on the inner side of the metallic layer. The adhesive layer extends over only preselected portions of the inner side of the metallic layer in the overlapping edge portion of the tape so that a plurality of spaced contact pads are provided on the inner side of the tape wherein the metallic layer is exposed. The adhesive layer bonds and seals the overlapping edge portions of the tape together, and metal-to-metal contact is effected between the inner and outer sides of the metallic layer in the contact pads to reduce radiation leakage between the overlapping edge portions of the tape.Type: GrantFiled: February 27, 1987Date of Patent: May 24, 1988Assignee: Neptco IncorporatedInventor: Joel D. Gruhn