Patents by Inventor Joel H. Rosenblatt

Joel H. Rosenblatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6711548
    Abstract: An air travel scheduling system and method for making charter-type flight scheduling available to the general public on a readily accessible and reasonable-cost basis. Individuals wanting to travel to, from or between non-hub cities can arrange, through a directory service web site on a distributed computer system, an individualized flight itinerary between specified locations. The directory service has a listing of a wide range of aircraft types and sizes currently available through fixed base operators. Based on factors which may include the booking traveler's point of origin, destination and number of passengers, the directory service assigns a most appropriate aircraft to satisfy the traveler's flight requirements in the most direct and cost-effective manner.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: March 23, 2004
    Inventor: Joel H. Rosenblatt
  • Publication number: 20030167960
    Abstract: A rail travel system and method having a main train which maintains a nearly constant speed between a point of departure and a point of arrival, while loading and unloading passengers at one or more points therebetween.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventor: Joel H. Rosenblatt
  • Patent number: 6082110
    Abstract: An auto-reheat system for use with a steam turbine in which a portion of the heat energy supplied to the turbine from a heat source is directed to an ensuing region of the vapor path where the transiting vapor has expanded to such an extent that it begins to become "wet." The portion of heat energy directed to the ensuing region is delivered concurrently with the supply of heat energy to the admission port of the turbine, permitting a higher temperature to be maintained within the transiting vapor and thereby reducing the quantity of moisture developing in the vapor during the latter stages of the turbine expansion cycle. The result is improved turbine energy output and reduced blade maintenance costs.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: July 4, 2000
    Inventor: Joel H. Rosenblatt
  • Patent number: 6052997
    Abstract: An improved combined cycle low temperature engine system is provided in which a circulating expanding turbine medium is used to recover heat as it transverses it turbine path. The recovery of heat is accomplished by providing a series of heat exchangers and presenting the expanding turbine medium so that it is in heat exchange communication with the circulating refrigerant in the absorption refrigeration cycle. Previously recovery of heat from an absorption refrigeration subsystem was limited to cold condensate returning from the condenser of an ORC turbine on route to its boiler. By utilizing the turbine medium a more efficient system is provided. Specifically, a minimum of a double digit efficiency improvement when compared to the net power output of a conventional low-pressure steam turbine, is obtainable.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: April 25, 2000
    Inventor: Joel H. Rosenblatt
  • Patent number: 6035643
    Abstract: A control system capable of responding to temperature sensors detecting changes in available external ambient cooling temperature, and adjusting turbine cycle thermodynamic medium exhaust pressure and temperature, as it completes its circulation path through the turbine cycle, to what best saturation pressure conditions are needed to correspond with the temperature detected as the coldest currently available saturation temperature in the condenser. Such a system permits condensation of the exhaust to occur at whatever the lowest saturation temperature and pressure available at the time happens to be.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: March 14, 2000
    Inventor: Joel H. Rosenblatt
  • Patent number: 5555731
    Abstract: A power turbine system operating in an organic Rankine cycle with a thermodynamic medium flowing therethrough, including a power turbine (10) having an inlet connected to a conduit (50) and an exhaust (14), a lower temperature engine system having a heat engine, a circulating thermodynamic turbine medium flowing through the heat engine and producing rejected waste heat during engine system operation, a regenerative heat transfer device (6) for heating the turbine medium from the turbine exhaust (14) to produce liquid phase turbine medium at an elevated temperature, a pump (28) for pumping the liquid phase turbine medium at the elevated temperature as a first boiler feed return stream, a boiler feed return stream conduit (50) for conducting the boiler feed return stream to the turbine (10) through branch conduits (51, 52) and injectors (53, 54) and to pump (55) to boiler vessel (56) for heating the turbine medium to be fed to the turbine inlet.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: September 17, 1996
    Inventor: Joel H. Rosenblatt
  • Patent number: 5421157
    Abstract: A low temperature engine system has an elevated temperature recuperator in the form of a heat exchanger (12) having a first inlet connected to an extraction point (45) at an intermediate position between the high temperature inlet and low temperature outlet (14) of a turbine heat engine (8, 10) and an outlet connected by a conduit (47) to a second inlet to the turbine between the high and low temperature ends thereof and downstream of the extraction point (45). In the recuperator (12) thermodynamic medium vapor from extraction point (45) is in heat exchange relationship with thermodynamic medium conducted from the low temperature exhaust end (14) of the turbine unit (8, 10) through a water cooled condenser (6) and in heat exchange relationship in a refrigerant condenser (2) with a refrigerant flowing in an absorption-refrigeration subsystem.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: June 6, 1995
    Inventor: Joel H. Rosenblatt
  • Patent number: 5231849
    Abstract: An ammonia absorption refrigeration system includes a generator vessel (G) in a casing (M) through which engine exhaust gas flows in heat exchange relation with the generator vessel, ammonia/water refrigerant solution being contained in the generator to be vaporized therein by the heat from the exhaust gas, a condenser (C) through which vaporized refrigerant flows from the generator, at least one evaporator (U, V) through which refrigerant flows from the condenser, and at least one absorber (W, Y) through which refrigerant flows from the evaporator (S) to be returned by a refrigerant pump (H, J) to the generator (G).
    Type: Grant
    Filed: September 15, 1992
    Date of Patent: August 3, 1993
    Inventor: Joel H. Rosenblatt
  • Patent number: 4753077
    Abstract: An improved multi-stage turbine system is provided which includes a high pressure turbine stage assembly and at least one lower pressure turbine stage assembly. Each of these turbine assemblies preferably has an inlet opening for introducing a thermodynamic medium in the form of a vapor and a discharge opening for discharging the thermodynamic medium from the turbine assembly at a reduced temperature and pressure. Each of the turbine assemblies is typically mounted on a rotatable shaft and these shafts may be coaxially aligned. An assembly such as a clutch may be provided for releasably interlocking the shafts. The thermodynamic medium is transported, when operating conditions are suitable, from the discharge opening of the high pressure turbine assembly to the inlet opening of the lower pressure turbine assembly.
    Type: Grant
    Filed: June 1, 1987
    Date of Patent: June 28, 1988
    Assignee: Synthetic Sink
    Inventor: Joel H. Rosenblatt
  • Patent number: 4503682
    Abstract: An improved engine system is provided which includes a synthetic low temperature sink that is developed in conjunction with an absorbtion-refrigeration subsystem having inputs from an external low-grade heat energy supply and from an external source of cooling fluid. A low temperature engine is included which has a high temperature end that is in heat exchange communication with the external heat energy source and a low temperature end in heat exchange communication with the synthetic sink provided by the absorbtion-refrigeration subsystem. By this invention, it is possible to vary the sink temperature as desired, including temperatures that are lower than ambient temperatures such as that of the external cooling source. This feature enables the use of an external heat input source that is of a very low grade because an advantageously low heat sink temperature can be selected.
    Type: Grant
    Filed: March 7, 1983
    Date of Patent: March 12, 1985
    Assignee: Synthetic Sink
    Inventor: Joel H. Rosenblatt