Patents by Inventor JOEL HAAF

JOEL HAAF has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11288803
    Abstract: Devices, systems, methods for validating ablation results in a patient's brain are provided. In some embodiments, the method for validating ablation result in a patient's brain includes obtaining magnetic resonance (MR) data of the patient's brain, by use of a magnetic resonance imaging (MRI) device; obtaining first imaging data of the patient's brain, by use of the MRI device; extracting, by use of computing device in communication with the MRI device, first fiber tracts passing through an anatomy in the patient's brain based on the first imaging data; obtaining, by use of the MRI device, second imaging data of the patient's brain after ablation of the anatomy in the patient's brain has started; extracting second fiber tracts passing through the anatomy in the patient's brain based on the second imaging data; and outputting a graphical representation of a comparison between the first fiber tracts and the second fiber tracts.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: March 29, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Lyubomir Georgiev Zagorchev, Joel Haaf
  • Patent number: 11202677
    Abstract: Treatment trajectory guidance systems and methods are provided. In one embodiment, the method for treatment trajectory guidance in a patient's brain includes obtaining a three- dimensional (3D) brain model that includes a model of an anatomy, the model of the anatomy including a plurality of feature points; modifying the 3D brain model based on magnetic resonance (MR) data of the patient's brain from a magnetic resonance imaging (MRI) device to obtain a plurality of modified feature points on a modified model of the patient's anatomy in the patient's brain; displaying on a display a first planned trajectory for treating the patient's anatomy based on the plurality of modified feature points; and displaying, on the display, a first estimated treatment result for the first planned trajectory.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: December 21, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Lyubomir Georgiev Zagorchev, Joel Haaf
  • Publication number: 20210000350
    Abstract: Systems and methods for evaluating an anatomical structure in a brain of a subject are provided. In an embodiment, a system for evaluating an anatomical structure in a brain of a subject includes a computing device in communication with a magnetic resonance imaging (MRI) device. The computing device operable to determine an abnormality in the anatomical structure by comparing a test activation level within a geometry of the anatomical structure to data in a normative database, and output, to a display device, a graphical representation of the abnormality in the anatomical structure. The test activation level is determined by aligning functional magnetic resonance imaging (fMRI) data obtained by use of the MRI device and the geometry of the anatomical structure. The geometry of the anatomical structure is delineated based on segmentation of magnetic resonance (MR) data obtained by use of the MRI device.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 7, 2021
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, JOEL HAAF
  • Publication number: 20190290130
    Abstract: Systems and methods for evaluating an anatomical structure in a brain of a subject are provided. In an embodiment, a system for evaluating an anatomical structure in a brain of a subject includes a computing device in communication with a magnetic resonance imaging (MRI) device. The computing device operable to determine an abnormality in the anatomical structure by comparing a test activation level within a geometry of the anatomical structure to data in a normative database, and output, to a display device, a graphical representation of the abnormality in the anatomical structure. The test activation level is determined by aligning functional magnetic resonance imaging (fMRI) data obtained by use of the MRI device and the geometry of the anatomical structure. The geometry of the anatomical structure is delineated based on segmentation of magnetic resonance (MR) data obtained by use of the MRI device.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, JOEL HAAF
  • Publication number: 20190105105
    Abstract: Treatment trajectory guidance systems and methods are provided. In one embodiment, the method for treatment trajectory guidance in a patient's brain includes obtaining a three- dimensional (3D) brain model that includes a model of an anatomy, the model of the anatomy including a plurality of feature points; modifying the 3D brain model based on magnetic resonance (MR) data of the patient's brain from a magnetic resonance imaging (MRI) device to obtain a plurality of modified feature points on a modified model of the patient's anatomy in the patient's brain; displaying on a display a first planned trajectory for treating the patient's anatomy based on the plurality of modified feature points; and displaying, on the display, a first estimated treatment result for the first planned trajectory.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, JOEL HAAF
  • Publication number: 20190108638
    Abstract: Devices, systems, methods for validating ablation results in a patient's brain are provided. In some embodiments, the method for validating ablation result in a patient's brain includes obtaining magnetic resonance (MR) data of the patient's brain, by use of a magnetic resonance imaging (MRI) device; obtaining first imaging data of the patient's brain, by use of the MRI device; extracting, by use of computing device in communication with the MM device, first fiber tracts passing through an anatomy in the patient's brain based on the first imaging data; obtaining, by use of the MRI device, second imaging data of the patient's brain after ablation of the anatomy in the patient's brain has started; extracting second fiber tracts passing through the anatomy in the patient's brain based on the second imaging data; and outputting a graphical representation of a comparison between the first fiber tracts and the second fiber tracts.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, JOEL HAAF