Patents by Inventor Joel Hestness

Joel Hestness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11593655
    Abstract: As deep learning application domains grow, a deeper understanding of the relationships between training set size, computational scale, and model accuracy improvements is extremely beneficial. Presented herein are large-scale empirical study of error and model size growth as training sets grow. Embodiments of a methodology for this measurement are introduced herein as well as embodiments for predicting other metrics, such as compute-related metrics. It is shown herein that power-law may be used to represent deep model relationships, such as error and training data size. It is also shown that model size scales sublinearly with data size. These scaling relationships have significant implications on deep learning research, practice, and systems. They can assist model debugging, setting accuracy targets, and decisions about data set growth. They can also guide computing system design and underscore the importance of continued computational scaling.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 28, 2023
    Assignee: Baidu USA LLC
    Inventors: Joel Hestness, Gregory Diamos, Hee Woo Jun, Sharan Narang, Newsha Ardalani, Md Mostofa Ali Patwary, Yanqi Zhou
  • Patent number: 11373042
    Abstract: Described herein are systems and methods for word embeddings to avoid the need to throw out rare words appearing less than a certain number of times in a corpus. Embodiments of the present disclosure involve group words into clusters/classes for multiple times using different assignments of the vocabulary words to a number of classes. Multiple copies of the training corpus are then generated using the assignments to replace each word with the appropriate class. A word embedding generating model is run on the multiple class corpora to generate multiple class embeddings. An estimate of the gold word embedding matrix is then reconstructed from multiple pairs of assignments, class embeddings, and covariances. Test results show the effectiveness of embodiments of the present disclosure.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 28, 2022
    Assignee: Baidu USA LLC
    Inventors: Kenneth Church, Hee Woo Jun, Joel Hestness
  • Publication number: 20200193093
    Abstract: Described herein are systems and methods for word embeddings to avoid the need to throw out rare words appearing less than a certain number of times in a corpus. Embodiments of the present disclosure involve group words into clusters/classes for multiple times using different assignments of the vocabulary words to a number of classes. Multiple copies of the training corpus are then generated using the assignments to replace each word with the appropriate class. A word embedding generating model is run on the multiple class corpora to generate multiple class embeddings. An estimate of the gold word embedding matrix is then reconstructed from multiple pairs of assignments, class embeddings, and covariances. Test results show the effectiveness of embodiments of the present disclosure.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 18, 2020
    Applicant: Baidu USA LLC
    Inventors: Kenneth CHURCH, Hee Woo JUN, Joel HESTNESS
  • Publication number: 20200175374
    Abstract: As deep learning application domains grow, a deeper understanding of the relationships between training set size, computational scale, and model accuracy improvements is extremely beneficial. Presented herein are large-scale empirical study of error and model size growth as training sets grow. Embodiments of a methodology for this measurement are introduced herein as well as embodiments for predicting other metrics, such as compute-related metrics. It is shown herein that power-law may be used to represent deep model relationships, such as error and training data size. It is also shown that model size scales sublinearly with data size. These scaling relationships have significant implications on deep learning research, practice, and systems. They can assist model debugging, setting accuracy targets, and decisions about data set growth. They can also guide computing system design and underscore the importance of continued computational scaling.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Applicant: Baidu USA LLC
    Inventors: Joel HESTNESS, Gregory DIAMOS, Hee Woo JUN, Sharan NARANG, Newsha ARDALANI, Md Mostofa Ali PATWARY, Yanqi ZHOU
  • Patent number: 10540961
    Abstract: Described herein are systems and methods for creating and using Convolutional Recurrent Neural Networks (CRNNs) for small-footprint keyword spotting (KWS) systems. Inspired by the large-scale state-of-the-art speech recognition systems, in embodiments, the strengths of convolutional layers to utilize the structure in the data in time and frequency domains are combined with recurrent layers to utilize context for the entire processed frame. The effect of architecture parameters were examined to determine preferred model embodiments given the performance versus model size tradeoff. Various training strategies are provided to improve performance. In embodiments, using only ˜230 k parameters and yielding acceptably low latency, a CRNN model embodiment demonstrated high accuracy and robust performance in a wide range of environments.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 21, 2020
    Assignee: Baidu USA LLC
    Inventors: Sercan Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates
  • Publication number: 20180261213
    Abstract: Described herein are systems and methods for creating and using Convolutional Recurrent Neural Networks (CRNNs) for small-footprint keyword spotting (KWS) systems. Inspired by the large-scale state-of-the-art speech recognition systems, in embodiments, the strengths of convolutional layers to utilize the structure in the data in time and frequency domains are combined with recurrent layers to utilize context for the entire processed frame. The effect of architecture parameters were examined to determine preferred model embodiments given the performance versus model size tradeoff. Various training strategies are provided to improve performance. In embodiments, using only ˜230 k parameters and yielding acceptably low latency, a CRNN model embodiment demonstrated high accuracy and robust performance in a wide range of environments.
    Type: Application
    Filed: August 28, 2017
    Publication date: September 13, 2018
    Applicant: Baidu USA LLC
    Inventors: Sercan Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates