Patents by Inventor Joel Katz

Joel Katz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120235016
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Applicant: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleinik-Ovod
  • Publication number: 20100142850
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: Affymetrix, INC.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Patent number: 7689022
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 30, 2010
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Erik Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Publication number: 20050057676
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: October 27, 2004
    Publication date: March 17, 2005
    Applicant: Affymetrix, INC.
    Inventors: Nathan Weiner, Patrick Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David Stura, Albert Bukys, Tim Woolaver, Thomas Regan, David Bradbury, Eric McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Publication number: 20040012676
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: March 14, 2003
    Publication date: January 22, 2004
    Applicant: Affymetrix, Inc., a Corporation Organized under the Laws of Delaware
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Patent number: 5642427
    Abstract: An integrated circuit for use as a building block in different embodiments of systems for enhancing audio performance by providing group delay to various frequency components of the signal. The integrated circuit includes four op amps and associated circuitry. Using external connections, the device can be configured as a two-channel stereo device, or can be cascaded for monaural applications. Two of the chips may be cascaded together for stereo applications. External capacitances and resistances are used to control the degree of group delay provided to the signal to realize desired audio enhancement.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: June 24, 1997
    Assignee: HDA Entertainment, Inc.
    Inventors: Joel Katz, Miles Kath
  • Patent number: 5425106
    Abstract: An integrated circuit for use as a building block in different embodiments of systems for enhancing audio performance by providing group delay to various frequency components of the signal. The integrated circuit includes four op amps and associated circuitry. Using external connections, the device can be configured as a two-channel stereo device, or can be cascaded for monaural applications. Two of the chips may be cascaded together for stereo applications. External capacitances and resistances are used to control the degree of group delay provided to the signal to realize desired audio enhancement.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: June 13, 1995
    Assignee: HDA Entertainment, Inc.
    Inventors: Joel Katz, Miles Kath
  • Patent number: 4130811
    Abstract: A modulation system which produces a modulated carrier having a number of central sideband pairs with power closely approximating the carrier power. A signal generator produces a sinusoidal reference voltage which is applied to a plurality of conditioning channels. Amplitude, phase and frequency conditioning means within the channels produce desired modulating signal components. The components are then synthesized in a power combiner and applied as the control voltage to phase/frequency modulation means to produce the desired modulated signal.
    Type: Grant
    Filed: December 27, 1977
    Date of Patent: December 19, 1978
    Assignee: Hughes Aircraft Company
    Inventors: Joel Katz, Eugene H. Gregory
  • Patent number: 3965428
    Abstract: A spectrum-shaped discriminating on/off target indicator which indicates if a signal simultaneously meets prescribed conditions on power level and spectrum shape. Signal power level and spectrum width are simultaneously measured and a DC logic output is obtained only for input signals which have a signal-to-noise ratio equal to, or higher than a preset minimum level though the signal "noise bandwidth" meets the prescribed conditions.
    Type: Grant
    Filed: January 4, 1971
    Date of Patent: June 22, 1976
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Joel Katz, James R. Pousson
  • Patent number: 3946322
    Abstract: A pulse width control circuit that narrows, then allows a gradual increase n the pulse width of the output pulses to the width of the input pulses that is activated as the pulse repetition rate of the input pulses increases. The pulse width control circuit will provide the turn-on transient and high voltage supply transient suppression for a pulsed transmitter by selectively interconnecting a pulse repetition detector and a variable pulse width generator with a combining logic circuit.
    Type: Grant
    Filed: June 17, 1974
    Date of Patent: March 23, 1976
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Joel Katz
  • Patent number: D857083
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: August 20, 2019
    Assignee: Bonsai Technology Company
    Inventors: Charles Thomas Blatz, Braum Joel Katz, Jaycee Indiviglio, Paul Nigro