Patents by Inventor Joel Le Calvez

Joel Le Calvez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11512573
    Abstract: A method for performing a fracturing operation in a subterranean formation of a field. The method includes obtaining, during the fracturing operation, distributed optical fiber data from a downhole sensor of a treatment well in the subterranean formation, and determining, based on the distributed optical fiber data, an active perforation location from a number of pre-determined perforation locations of the treatment well. The active perforation location is a location of fluid flow into the subterranean formation during the fracturing operation. The method further includes generating, based at least on the active perforation location, a fracturing model for the subterranean formation, and performing, based on the fracturing model, modeling of the fracturing operation to generate a modeling result.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 29, 2022
    Assignee: Schlumberger Technology Corporation
    Inventors: Joel Le Calvez, David Sobernheim, Sr.
  • Publication number: 20220335185
    Abstract: The present disclosure relates to a method comprising: receiving a resource model associated with a resource site and receiving one or more objective parameters, such that a first objective parameter comprised in the one or more objective parameters is a function of one or more parameter values of the resource model. The method comprises executing simulations to generate a first uncertainty value based on at least one of a first parameter value and a first uncertainty value of a first parameter of the resource model. The simulations may be executed to generate a first forecast uncertainty value for each scenario comprised in a plurality of scenarios. The method also identifies one service that minimizes an uncertainty value of the objective parameter based on the forecast uncertainty value. The method further includes generating a first visualization comprising the one identified service for viewing by a user via a user interface.
    Type: Application
    Filed: September 4, 2020
    Publication date: October 20, 2022
    Inventors: Morten Kristensen, Marie LeFranc, Bertrand Theuveny, Hadrien Dumont, Nikita Chugunov, Sebastien Roche, Wiwin Yuliana, Zhenning Bao, Erwan Olliero, Ram Sunder Kalyanraman, Thomas Pfeiffer, Claude Signer, Simon Edmundson, Hua Yu, Ke Jiang, Vassilis Varveropoulos, Henri-Pierre Valero, Eric Jeanson, Guillaume Borrel, Pierre Bettinelli, Joel Le Calvez
  • Publication number: 20220243575
    Abstract: The present disclosure relates to a system that is operable to receive an execution plan and execute a control operation on one or more equipment based operations within the execution plan. The one or more operations may include a data capturing operation associated with a resource site. In one embodiment, the system may be operable to execute at least a first operation in response to a success variable of the data capturing operation indicating a successful execution of the data capturing operation. The first operation may include a quality control operation that is executed by comparing at least one characteristic of the captured data to an expected characteristic to generate quality state data. The quality state data may have one of an acceptable status and an undesirable status. In response to the quality state data indicating an acceptable status for the quality control operation, executing at least a second operation.
    Type: Application
    Filed: September 4, 2020
    Publication date: August 4, 2022
    Inventors: Morten Kristensen, Marie LeFranc, Bertrand Theuveny, Hadrien Dumont, Nikita Chugunov, Sebastien Roche, Wiwin Yuliana, Zhenning Bao, Erwan Olliero, Ram Sunder Kalyanraman, Thomas Pfeiffer, Claude Signer, Simon Edmundson, Hua Yu, Ke Jiang, Vassilis Varveropoulos, Henri-Pierre Valero, Eric Jeanson, Guillaume Borrel, Pierre Bettinelli, Joel Le Calvez
  • Publication number: 20190242233
    Abstract: A method for performing a fracturing operation in a subterranean formation of a field. The method includes obtaining, during the fracturing operation, distributed optical fiber data from a downhole sensor of a treatment well in the subterranean formation, and determining, based on the distributed optical fiber data, an active perforation location from a number of pre-determined perforation locations of the treatment well. The active perforation location is a location of fluid flow into the subterranean formation during the fracturing operation. The method further includes generating, based at least on the active perforation location, a fracturing model for the subterranean formation, and performing, based on the fracturing model, modeling of the fracturing operation to generate a modeling result.
    Type: Application
    Filed: October 17, 2016
    Publication date: August 8, 2019
    Inventors: Joel Le Calvez, David Sobernheim, SR.
  • Patent number: 9158020
    Abstract: A microseismic method of determining the position of a downhole receiver (4) making use of received signals from events (21, 22) at least two known locations using the equivalent of a Thales circle construction from two or more pairs of events.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 13, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Leo Eisner, Joel Le Calvez
  • Patent number: 8567496
    Abstract: A system and method for managing a well site having a subterranean formation. The method comprises determining a first spectral attenuation of a first seismic wave measured from a first location, determining a second spectral attenuation of a second seismic wave measured from a second location, determining a reservoir attenuation anisotropy from a comparison of the first spectral attenuation to the second spectral attenuation, and determining at least one fracture parameter of the subterranean formation from a comparison of the first seismic wave to the second seismic wave.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 29, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Stewart Thomas Taylor, Joel Le Calvez
  • Publication number: 20120168151
    Abstract: A system and method for managing a well site having a subterranean formation is provided. The method comprises determining a first spectral attenuation of a first seismic wave measured from a first location, determining a second spectral attenuation of a second seismic wave measured from a second location, determining a reservoir attenuation anisotropy from a comparison of the first spectral attenuation to the second spectral attenuation, and determining at least one fracture parameter of the subterranean formation from a comparison of the first seismic wave to the second seismic wave.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Inventors: Stewart Thomas Taylor, Joel Le Calvez
  • Patent number: 8157011
    Abstract: A system and method for performing a fracture operation on a well site having a subterranean formation with a reservoir therein. The method involves measuring at least one seismic wave before and after stimulating the subterranean formation, comparing the seismic waves measured before the stimulation of the subterranean formation to the seismic waves measured after stimulation of the subterranean formation, and determining at least one fracture parameter of the subterranean formation from the compared seismic waves.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: April 17, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Stewart Thomas Taylor, Joel Le Calvez
  • Publication number: 20110188347
    Abstract: Methods and systems are described for measuring effects of a hydraulic fracturing process. The techniques can utilizes cross-well seismic technology, such as used in Schlumberger's DeepLook-CS tools and service, or in some case surface to borehole or borehole to surface seismic technology. The downhole seismic sources at known locations can be conventional sources or can be other types of equipment operating at known locations such as perforation guns. The source is activated or swept creating energy which is transmitted through the formation. The energy is recorded at the receiver array and processed to yield a tomographic image indicating changes in the subterranean formation resulting from the hydraulic fracturing process. The process can be performed pre and post hydraulic fracture stimulation to generate a difference image of propped fractures in the reservoir.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 4, 2011
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Marc Thiercelin, Joel Le Calvez, Javaid Durrani, Mark McCallum, Bruce P. Marion, Luke Wilkens, Gisele Thiercelin
  • Publication number: 20110069584
    Abstract: A microseismic method of determining the position of a downhole receiver (4) making use of received signals from events (21, 22) at least two known locations using the equivalent of a Thales circle construction from two or more pairs of events.
    Type: Application
    Filed: July 2, 2008
    Publication date: March 24, 2011
    Applicant: Schlumberger Tecnology Corporation
    Inventors: Leo Eisner, Joel Le Calvez
  • Patent number: 7830745
    Abstract: A method and system model of the formation and rock matrices in a well site. A microseismic event from a hydraulic fracture in a well bore is recorded at a monitoring well site. The S-coda wave window of the microseismic event is identified. Q-factors for a set of frequencies within the S-coda wave window are then identified.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 9, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Yoscel Suarez, Joel Le Calvez
  • Publication number: 20090168599
    Abstract: A method and system model of the formation and rock matrices in a well site. A microseismic event from a hydraulic fracture in a well bore is recorded at a monitoring well site. The S-coda wave window of the microseismic event is identified. Q-factors for a set of frequencies within the S-coda wave window are then identified.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Inventors: Yoscel Suarez, Joel Le Calvez