Patents by Inventor Joel Mach

Joel Mach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9338035
    Abstract: In a method for initializing a Controller Area Network (CAN) module in a microcontroller, the following steps may be provided: measuring the period times between a plurality of falling or rising edges of a CAN signal; sorting the period times; determining difference values between adjacent period times of the sorted period times; sorting the difference values; selecting a first difference value from the sorted difference values and determining a first frequency from the first difference value; initializing the CAN module using the selected frequency; receiving a CAN signal frame; determining whether an error occurred; if an error occurred selecting a next frequency and repeating initializing the CAN module until a valid CAN frequency has been found.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: May 10, 2016
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventor: Joel Mach
  • Patent number: 9028661
    Abstract: A blood glucose meter comprises a blood sample test strip, a constant current source, a precision timer, a digital processor and memory, and an analog measurement circuit, e.g., voltage comparator, analog-to-digital converter (ADC), etc., that eliminates the complex analog front end and other related circuits of present technology glucose meters. When a blood sample is applied to the blood sample test strip a charge, Q, develops from the reaction between an enzyme in the test strip and the blood sample. The constant current source injects a constant current value, I, into the charge, Q, on the blood sample test strip over a precisely measured time determined by when the excess charge, Q, has been removed from the test strip. The amount of charge, Q, is determined by Q=I*T, the charge, Q, is then converted into a blood glucose level for display.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 12, 2015
    Assignee: Microchip Technology Incorporated
    Inventors: James E. Bartling, Aaron Joel Mach, Darren Edward Noel Wenn
  • Publication number: 20120233341
    Abstract: In a method for initializing a Controller Area Network (CAN) module in a microcontroller, the following steps may be provided: measuring the period times between a plurality of falling or rising edges of a CAN signal; sorting the period times; determining difference values between adjacent period times of the sorted period times; sorting the difference values; selecting a first difference value from the sorted difference values and determining a first frequency from the first difference value; initializing the CAN module using the selected frequency; receiving a CAN signal frame; determining whether an error occurred; if an error occurred selecting a next frequency and repeating initializing the CAN module until a valid CAN frequency has been found.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Inventor: Joel Mach
  • Publication number: 20120171706
    Abstract: A blood glucose meter comprises a blood sample test strip, a constant current source, a precision timer, a digital processor and memory, and an analog measurement circuit, e.g., voltage comparator, analog-to-digital converter (ADC), etc., that eliminates the complex analog front end and other related circuits of present technology glucose meters. When a blood sample is applied to the blood sample test strip a charge, Q, develops from the reaction between an enzyme in the test strip and the blood sample. The constant current source injects a constant current value, I, into the charge, Q, on the blood sample test strip over a precisely measured time determined by when the excess charge, Q, has been removed from the test strip. The amount of charge, Q, is determined by Q=I*T, the charge, Q, is then converted into a blood glucose level for display.
    Type: Application
    Filed: December 19, 2011
    Publication date: July 5, 2012
    Inventors: James E. Bartling, Aaron Joel Mach, Darren Edward Noel Wenn