Patents by Inventor Joel N. Beer

Joel N. Beer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170000577
    Abstract: A manipulator is provided that supports a surgical tool used in a surgical procedure. The manipulator includes a plurality of links and joints and a controller that evaluates an actual joint angle of each joint relative to one or more joint boundary angles for each joint. The controller computes forces and torques to apply to a virtual rigid body based on the evaluation. The controller then determines a commanded joint angle for each joint based on the computed forces and torques so that actuators move the surgical tool to a commanded pose associated with the commanded joint angles.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20170000572
    Abstract: Robotic systems and methods for controlling a tool to remove material from a workpiece. Workpieces such as bones are often non-homogenous and have varying density distributions throughout their volumes. In some embodiments, the systems and methods control the feed rate of the tool, the tool path of the tool, and the rotational speed of the tool based on the density distribution in order to provide a desired outcome for a surgical procedure.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 5, 2017
    Applicant: MAKO Surgical Corp.
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Publication number: 20160338782
    Abstract: Surgical systems and methods for manipulating an anatomy with a tool include defining a first virtual boundary associated with the anatomy and a second virtual boundary associated with the anatomy. The first virtual boundary is activated in a first mode. Movement of the tool is constrained in relation to the first virtual boundary in the first mode. The first virtual boundary is deactivated in a second mode. Movement of the tool is constrained in relation to the second virtual boundary in the second mode.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 9480534
    Abstract: A navigation system for use with a surgical manipulator operable in manual or semi-autonomous modes and a method for removing a volume of tissue from a patient. The navigation system includes a tracker for attaching to the patient and a localizer to receive signals from the tracker or transmit signals to the tracker. The navigation system includes a navigation processor that runs a plurality of software modules.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: November 1, 2016
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 9226796
    Abstract: A method is provided for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path. The method includes determining actual torques for each active joint of an actuated arm mechanism and calculating expected torques for each active joint of the actuated arm mechanism, wherein the expected torques are calculated based on an angular position of each active joint and a commanded joint angle for each active joint. The method further determines estimated backdrive torques based on the expected torques and the actual torques, wherein the estimated backdrive torques indicate a disturbance along the cutting path.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 5, 2016
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Patrick Roessler, Joel N. Beer, John Ketchel, José Luis Moctezuma de la Barrera
  • Publication number: 20150374446
    Abstract: System and method for controlling a surgical manipulator to apply an energy applicator to a patient. The surgical manipulator cooperates with a navigation system to position the energy applicator with respect to a boundary so that the energy applicator is constrained from moving outside the boundary. The boundary is generated based on implant parameters measured after manufacture of the implant.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Donald W. Malackowski, John Michael Stuart, Jerry A. Culp, David Gene Bowling, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20150366629
    Abstract: A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator further includes at least one controller configured to operate the surgical manipulator in a manual mode or a semi-autonomous mode. The at least one controller including a feed rate calculator configured to calculate an instrument feed rate. The instrument feed rate is a velocity at which a distal end of the energy applicator advances along a path segment of a tool path in the semi-autonomous mode.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20150289941
    Abstract: Robotic system and method for positioning an energy applicator extending from a surgical instrument. The robotic system includes a surgical manipulator operable in a manual mode or a semi-autonomous mode. The surgical manipulator moves the energy applicator along a tool path in the semi-autonomous mode, monitors output of a force/torque sensor as the energy applicator moves along the tool path, and reorients the surgical instrument based on the output in response to a user applying reorienting forces and torques to the surgical instrument.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 15, 2015
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John Ketchel
  • Publication number: 20150265358
    Abstract: A robotic system includes a surgical manipulator and a force/torque sensor. The surgical manipulator operates in a first operating mode in which a user applies forces and torques to the surgical instrument to cause movement of the energy applicator. The surgical manipulator also operates in a second operating mode in which the surgical manipulator moves the energy applicator along a tool path. A controller monitors the output of the force/torque sensor as the energy applicator is being moved along the tool path in the second operating mode and transitions from the second operating mode to the first operating mode in response to the output exceeding associated limits.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Inventors: David Gene Bowling, John Michael Stuart, Joel N. Beer, John Ketchel
  • Patent number: 9119655
    Abstract: A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator further includes a switch and at least one controller configured to control operation of the surgical manipulator in a first operating mode or a second operating mode. The at least one controller is also configured to determine a commanded pose to which the energy applicator is advanced based on a summation of a plurality of input forces and torques and transition between the operating modes by adjusting the plurality of input forces and torques in response to actuation of the switch.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 1, 2015
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John Ketchel
  • Publication number: 20140276943
    Abstract: Systems and methods for establishing and tracking virtual boundaries. The virtual boundaries can delineate zones in which an instrument is not permitted during a surgical procedure. The virtual boundaries can also delineate zones in which the surgical instrument is permitted during the surgical procedure. The virtual boundaries can also identify objects or structures to be treated by the instrument or to be avoided by the instrument during the surgical procedure.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: David Gene Bowling, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Publication number: 20140222207
    Abstract: A method is provided for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path. The method includes determining actual torques for each active joint of an actuated arm mechanism and calculating expected torques for each active joint of the actuated arm mechanism, wherein the expected torques are calculated based on an angular position of each active joint and a commanded joint angle for each active joint. The method further determines estimated backdrive torques based on the expected torques and the actual torques, wherein the estimated backdrive torques indicate a disturbance along the cutting path.
    Type: Application
    Filed: March 13, 2014
    Publication date: August 7, 2014
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Patrick Roessler, Joel N. Beer, John Ketchel, José Luis Moctezuma de la Barrera
  • Publication number: 20140039517
    Abstract: A navigation system for use with a surgical manipulator operable in manual or semi-autonomous modes. The navigation system includes a tracker for attaching to the patient and a localizer to receive signals from the tracker or transmit signals to the tracker. The navigation system includes a navigation processor that runs a plurality of software modules.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John Ketchel
  • Publication number: 20140039681
    Abstract: A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator further includes at least one controller configured to determine a commanded pose to which the energy applicator is advanced, wherein the commanded pose is determined based on a summation of a plurality of force and torque signals.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 6, 2014
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John Ketchel
  • Publication number: 20100275718
    Abstract: A manipulator, such as for use in medical procedures, is provided. The manipulator includes a body and a first actuator system connected to the body at a first attachment point and is capable of moving the first attachment point with at least three degrees of freedom. A second actuator system is connected to the body at a second attachment point and is capable of moving the second attachment point with at least three degrees of freedom. A third actuator system is connected to the body at a third attachment point and is capable of moving the third attachment point with at least one degree of freedom.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 4, 2010
    Applicant: MicroDexterity Systems, Inc.
    Inventors: J. Michael Stuart, Joel N. Beer, David G. Bowling, John S. Ketchel