Patents by Inventor Joel P. Carberry

Joel P. Carberry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8063560
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 7602121
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 13, 2009
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 7407423
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 5, 2008
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6998776
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: February 14, 2006
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20040207314
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, Robert Morena, Joseph F. Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6735365
    Abstract: In accordance with an exemplary embodiment of the present invention, an optical interleaver/deinterleaver includes a substrate having at least one window therein. The interleaver/deinterleaver further includes a first optical waveguide and a second optical fiber, which are disposed over a substrate. The first and second optical waveguides are coupled together at at least two locations to form optical couplers at each of the locations. The first optical waveguide has a first length between the two locations, and the second optical waveguide has a second length between the two locations wherein the first length is smaller than the second length. Illustratively, the first optical waveguide is disposed over the window, so that the window is along the first length of the first optical fiber.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 11, 2004
    Assignee: Corning, Incorporated
    Inventors: Joel P. Carberry, Qi Wu
  • Publication number: 20030194184
    Abstract: In accordance with an exemplary embodiment of the present invention, an optical interleaver/deinterleaver includes a substrate having at least one window therein. The interleaver/deinterleaver further includes a first optical waveguide and a second optical fiber, which are disposed over a substrate. The first and second optical waveguides are coupled together at at least two locations to form optical couplers at each of the locations. The first optical waveguide has a first length between the two locations, and the second optical waveguide has a second length between the two locations wherein the first length is smaller than the second length. Illustratively, the first optical waveguide is disposed over the window, so that the window is along the first length of the first optical fiber.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Inventors: Joel P. Carberry, Qi Wu
  • Patent number: 6603900
    Abstract: The invention relates to an athermal optical waveguide grating device. The optical waveguide grating device includes a fiber Bragg grating secured and bonded to a supporting substrate member with a low thermal expansion securing glass, such as a copper alumino silicate glass. The inventive devices and method of making the devices include the utilization of intermediate solid insert members between the fiber and a negative thermal expansion substrate.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: August 5, 2003
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, Joel P. Carberry, Paul S. Danielson, Steven E. DeMartino, Henry E. Hagy, Brent M. Wedding
  • Patent number: 6477299
    Abstract: The invention includes environmentally stable athermalized optical fiber gratings and methods of making such stabilized optical waveguide fiber grating. Stable humidity-resistant athermalized fiber Bragg gratings are provided by stabilizing a negative thermal expansion substrate and utilizing a durable frit to attach the fiber Bragg grating to the substrate.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: November 5, 2002
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Joel P. Carberry, Kenneth Chyung, Joseph E. Pierson, Kamjula P. Reddy, James E. Webb
  • Patent number: 6430350
    Abstract: An optical device comprises an optical waveguide component, a housing for the optical waveguide component, and a connecting portion that attaches the optical waveguide component to the housing while substantially completely isolating the optical waveguide component from force imposed on the connecting portion due to a dimensional change of the housing caused by a variation in ambient conditions.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: August 6, 2002
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, Joel P. Carberry, Brent M. Wedding, David L. Weidman
  • Patent number: 6362118
    Abstract: The invention includes methods of stabilizing negative thermal expansion glass-ceramic optical waveguide substrates. The invention includes the stabilized negative thermal expansion glass-ceramic optical waveguide substrates. The stabilized substrates have very stable physical characteristics such as dimensional length when exposed to extreme environments. The stabilized substrates are used to athermalize optical waveguide devices such as optical fiber grating. The stabilized substrates are particularly well suited for providing athermalized fiber Bragg grating.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: March 26, 2002
    Assignee: Corning Incorporated
    Inventors: George H. Beall, Joel P. Carberry, Kenneth Chyung, Joseph E. Pierson, Kamjula P. Reddy, James E. Webb
  • Patent number: 6307990
    Abstract: Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: October 23, 2001
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, Gang Chen, Peter Knowles, Glenn E. Kohnke, William J. Miller, Robert A. Modavis, Laura A. Weller-Brophy
  • Publication number: 20010028764
    Abstract: Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
    Type: Application
    Filed: June 6, 2001
    Publication date: October 11, 2001
    Inventors: Joel P. Carberry, Gang Chen, Peter Knowles, Glenn E. Kohnke, William J. Miller, Robert A. Modavis, Laura A. Weller-Brophy
  • Publication number: 20010028763
    Abstract: Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
    Type: Application
    Filed: June 6, 2001
    Publication date: October 11, 2001
    Inventors: Joel P. Carberry, Gang Chen, Peter Knowles, Glenn E. Kohnke, William J. Miller, Robert A. Modavis, Laura A. Weller-Brophy
  • Patent number: 6301410
    Abstract: Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: October 9, 2001
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, Gang Chen, Peter Knowles, Glenn E. Kohnke, William J. Miller, Robert A. Modavis, Laura A. Weller-Brophy
  • Patent number: 6278821
    Abstract: A Mach-Zehnder interferometer for performing an optical function on a plurality of optical fibers is provided. The interferometer includes a first cane segment surrounding the optical fibers. The first cane segment forms a first optical coupling region. The interferometer also includes a second cane segment surrounding the optical fibers. The second cane segment forms a second optical coupling region. A phase shift region is formed by a discontinuity between the first and second cane segments for exposing the optical fibers. The optical fibers are suspended between the first and second cane segments within the phase shift region. A substrate is provided for supporting the optical fibers within the phase shift region.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: August 21, 2001
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, Mark F. Krol, William J. Miller, Mark L. Morrell
  • Patent number: 6269207
    Abstract: Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: July 31, 2001
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, Gang Chen, Peter Knowles, Glenn E. Kohnke, William J. Miller, Robert A. Modavis, Laura A. Weller-Brophy
  • Patent number: 5956443
    Abstract: A waveguide fiber coupler including a tubular element surrounding the coupling region wherein sealed elongated open regions are formed between the fused waveguide surfaces which form a part of the coupler and the tubular element. The coupler exhibits improved properties due to the presence of the elongated open regions. The sealing of the elongated open regions provides for improved environmental stability of the coupler.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: September 21, 1999
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, William J. Miller, David L. Weidman
  • Patent number: 5881189
    Abstract: To make an overclad fiber optic coupler, the bare regions of a plurality of optical fibers are positioned within a glass capillary tube. The midregion of the tube is then collapsed and stretched to cause coupling between the fibers. To obtain desirable coupling characteristics, the fibers must be situated in the glass tube bore in side-by-side fashion such that the cross-sectional configuration of the fibers constitutes a given geometrical array. To ensure that the fibers are properly positioned within the glass tube, they are fed to that tube from a plurality of guide tubes, the ends of which are retained adjacent to the end of the glass tube in side-by-side fashion in the given geometrical array.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: March 9, 1999
    Assignee: Corning Incorporated
    Inventors: Joel P. Carberry, William J. Miller