Patents by Inventor Joel Racchini

Joel Racchini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138981
    Abstract: Delivery devices for delivering a self-expanding prosthetic heart valve are disclosed. The delivery device includes at least one cord is configured to selectively cinch the self-expanding prosthetic heart valve. The delivery device further includes at least one self-expanding release pin comprising a proximal segment, a distal segment, and an intermediate segment positioned between the proximal segment and the distal segment. The at least one self-expanding release pin includes a normal, expanded condition wherein the intermediate segment extends radially outward relative to a central axis of the spindle from the proximal segment to the distal segment. The delivery device further includes a capsule configured to be distally extended relative to the spindle to collapse the at least one self-expanding release pin from the normal, expanded condition of the at least one self-expanding release pin to a collapsed condition of the at least one self-expanding release pin.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Patent number: 11957575
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Patent number: 11957581
    Abstract: A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 11931257
    Abstract: Aspects of the disclosure relate to devices and methods for preparing an existing, implanted prosthetic aortic valve for subsequent prosthetic aortic valve implantation. To prepare the existing valve, a valve preparation device is delivered to the valve and valve leaflets are severed either via mechanical cutting or electrodes so that the leaflets cannot obstruct a blood flow path once a prosthetic valve is subsequently implanted within the valve. Similarly, in alternate embodiments, devices and methods of the disclosure can be used for preparing a native aortic valve for delivery and implantation of a prosthetic valve.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 19, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Jorge Zhingre Sanchez, Anthony Nesberg, Erik Jagger, Jeffrey Sandstrom, Vijayanarayan Madhavan Potti, Jacob McHenry, Michael Bateman, Ryan Stublaski, Ana Menk, Paul Rothstein, Joel Racchini
  • Patent number: 11903828
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 20, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Publication number: 20230390062
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 7, 2023
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Publication number: 20230310148
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventors: Evelyn BIRMINGHAM, Bernard MULVIHILL, Joel RACCHINI, Jeffrey SANDSTROM
  • Publication number: 20230301781
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 28, 2023
    Inventors: Kshitija GARDE, Joel RACCHINI, Paul ROTHSTEIN, Jeffrey SANDSTROM
  • Patent number: 11690713
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: July 4, 2023
    Assignee: Medtronic CV Luxembourg S.A.R.L.
    Inventors: Kshitija Garde, Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 11672656
    Abstract: A system for percutaneous delivery of a stented prosthetic heart valve. The system includes a delivery device with a self-expanding prosthetic heart valve attached thereto and a delivery sheath with an opening on a distal end thereof. The delivery sheath includes a funnel on a proximal end thereof. The delivery device is inserted into the funnel of the delivery sheath. As the delivery device is advanced into the funnel, the expanded heart valve is compressed by the shape of the funnel into a crimped arrangement. The delivery device further advances the heart valve distally within the delivery sheath past the delivery sheath opening. The delivery device is advanced relative to the delivery sheath in transitioning the heart valve from a crimped arrangement to the expanded and deployed arrangement.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 13, 2023
    Inventors: Devin Gosal, Susheel Deshmukh, Philip Haarstad, Joel Racchini, Finn Rinne, Paul Rothstein, Jeffrey Sandstrom
  • Publication number: 20220338986
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart valve includes a capsule assembly, a handle, and an outer stability shaft. The capsule assembly includes a capsule and a proximal shaft coupled to the capsule. The capsule includes an expanded configuration wherein the capsule has a first outer diameter, and a collapsed configuration wherein the capsule has a second outer diameter smaller than the first outer diameter. The outer stability shaft defines a lumen and is coupled to the handle and configured to receive the proximal shaft within the lumen of the outer stability shaft. The outer stability shaft has an inner diameter, wherein the first outer diameter of the capsule is greater than the inner diameter of the outer stability shaft and the second outer diameter of the capsule is smaller than the inner diameter of the outer stability shaft.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 27, 2022
    Inventors: Joel RACCHINI, Jeffrey SANDSTROM
  • Publication number: 20220338984
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Application
    Filed: July 13, 2022
    Publication date: October 27, 2022
    Applicant: Medtronic Vascular, Inc.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Publication number: 20220323148
    Abstract: The disclosure includes methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. The disclosure also relate to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Roger D. Greeley, Jeffrey D. Sandstrom, Joel Racchini, James R. Keogh
  • Patent number: 11406496
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 9, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Patent number: 11406446
    Abstract: The disclosure includes methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. The disclosure also relates to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 9, 2022
    Assignee: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Roger D. Greeley, Jeffrey D. Sandstrom, Joel Racchini, James R. Keogh
  • Patent number: 11399938
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart valve includes a capsule assembly, a handle, and an outer stability shaft. The capsule assembly includes a capsule and a proximal shaft coupled to the capsule. The capsule includes an expanded configuration wherein the capsule has a first outer diameter, and a collapsed configuration wherein the capsule has a second outer diameter smaller than the first outer diameter. The outer stability shaft defines a lumen and is coupled to the handle and configured to receive the proximal shaft within the lumen of the outer stability shaft. The outer stability shaft has an inner diameter, wherein the first outer diameter of the capsule is greater than the inner diameter of the outer stability shaft and the second outer diameter of the capsule is smaller than the inner diameter of the outer stability shaft.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 2, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Joel Racchini, Jeffrey Sandstrom
  • Patent number: 11395697
    Abstract: The disclosure relates to methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. The disclosure also relates to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: July 26, 2022
    Assignee: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Jeffrey D. Sandstrom, Joel Racchini, James R. Keogh, Martin T. Rothman
  • Publication number: 20220175528
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 9, 2022
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Patent number: 11278407
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 22, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Joel Racchini, Jeffrey Sandstrom
  • Publication number: 20210177593
    Abstract: A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 17, 2021
    Applicant: Medtronic, Inc.
    Inventors: Joel Racchini, Paul Rothstein, Jeffrey Sandstrom