Patents by Inventor Joel T. Eggert

Joel T. Eggert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931528
    Abstract: A catheter configured to dynamically compensate for the impact of internal and external forces that act upon the catheter during use is disclosed. The catheter may include sensors configured to measure received forces on control cables that extend within the catheter. A controller, coupled to the sensors, may record received force measurements associated with a working position of a distal end of the catheter. The controller may monitor subsequently received forces to identify force variances that may deflect the distal end of the catheter from its working position and may apply a driving force to one or more of the control cables to minimize the force variances. Monitoring received forces during use and applying compensating drive forces may reduce deflection of the distal end of the catheter, increasing the accuracy and precision of an annuloplasty procedure while minimizing potential damage to cardiac tissue.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: March 19, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: James P. Rohl, Aaron Abbott, Daniel Shuey, Joel T. Eggert, James K. Cawthra, Jr., Jay E. Daley, Christopher Nguyen
  • Publication number: 20240081998
    Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
  • Patent number: 11903831
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. In an embodiment, an anchor is movable between a delivery configuration and a deployed configuration, the anchor being in the delivery configuration when disposed within a delivery catheter, the anchor being in the deployed configuration when the anchor is moved beyond a distal end of the delivery catheter. When the anchor is in the delivery configuration it has a first outer dimension and when the anchor is in the deployed configuration it has a second outer dimension, the first outer dimension being smaller than the second outer dimension. The anchor is engageable with a papillary muscle or a heart wall when the anchor is in the deployed configuration and is also coupleable to an artificial chordae tendineae to anchor the artificial chordae tendineae to the papillary muscle or heart wall.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 20, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
  • Patent number: 11850152
    Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 26, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
  • Publication number: 20230405275
    Abstract: A steering system for a steerable flexible elongate member such as for delivering a medical device and/or system. The steering system may be configured for two-way or four-way steering. A control knob is rotatable to control steering of the steerable flexible elongate member in a first direction or a second direction within a steering plane. In a four-way steering system, a first control knob steers the steerable flexible elongate member in a first steering plane, and a second control knob steers the steerable flexible elongate member in a second steering plane transverse to the first steering plane. The steering system may be supported on a stand configured to allow rotational support of the steering system. The stand may support two steering systems in a manner allowing relative axial translation therebetween.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 21, 2023
    Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and Research
    Inventors: Mitchell Nelson, Aaron Abbott, Joel T. Eggert
  • Publication number: 20230404565
    Abstract: A delivery and deployment system having a control handle operable to deliver and/or deploy an implantable device, e.g., transluminally. A steering control system may include a steering control knob rotatable about the longitudinal axis of the handle to axially pull on a steering element to steer a flexible elongate member to deliver an implantable device to a desired site. An implantable device deployment system may include a slider selectively slidable with respect to the control handle to deploy an implantable device, and optionally to retain the implantable device in a delivery position. A tether adjustment system may include a knob rotatable about the handle's longitudinal axis to axially pull on a tether element to adjust the tension and/or length thereof. A tensioning and locking system may include a knob rotatable about the handle's longitudinal axis to shift a tensioning and locking device to set the tether element's tension and/or length.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 21, 2023
    Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and Research
    Inventors: Daniel Shuey, Joel T. Eggert, Mitchell Nelson, Eric Jason Krause, Evan M Leingang, Greg Johnson, Greg Hoepfner
  • Publication number: 20230404596
    Abstract: A delivery/deployment system having a control handle configured to control delivery and/or deployment of a medical device with arms configured to grasp tissue therebetween. The system may include a device spreader with arms engaging the medical device arms and controlled by an actuator operably coupled with the control handle. The control handle may include a lever pivotable to similarly pivot the device spreader and medical device arms open or closed. A device retention assembly may be provided to retain the medical device with respect to the device spreader. The control handle may include a release element movable to shift the retention assembly into a disengaged configuration allowing release of the medical device from the device spreader. The control handle may axially translate and/or rotate the device spreader into a desired position, and may be fixable in position by a handle lock once in a desired position.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 21, 2023
    Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and Research
    Inventors: Daniel Shuey, Joel T. Eggert, Mitchell Nelson, Eric Jason Krause, Evan M Leingang, Greg Johnson, Greg Hoepfner
  • Publication number: 20230346543
    Abstract: A delivery/deployment system for delivering an implantable device within an implantable device housing and for deploying the implantable device from the implantable device housing. A stylet may be used to longitudinally advance or retract the implantable device with respect to the implantable device housing, such as to extend and deploy the implantable device from the implantable device housing. The delivery/deployment system has an implantable-device-extension-limiter arrangement configured to limit the distance which the implantable device may be extended from the implantable device housing. The delivery/deployment system optionally also has an implantable-device-rotation-limiter arrangement configured to limit rotation of the implantable device with respect to the implantable device housing.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Applicants: BOSTON SCIENTIFIC SCIMED, INC., MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH
    Inventors: Mitchell Nelson, Troy Anthony Giese, Joel T. Eggert, Jason John Matteson, JR., Christopher J. Koudela, Dana Sachs
  • Publication number: 20230338144
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Chrstopher J. Koudela
  • Patent number: 11737875
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 29, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
  • Publication number: 20230233324
    Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.
    Type: Application
    Filed: April 5, 2023
    Publication date: July 27, 2023
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl
  • Publication number: 20230190470
    Abstract: Implantable devices formed of materials which are not readily imageable, and which may shift from a delivery configuration to a deployment configuration upon deployment, are delivered and deployed with a deployment/delivery device having sensors generating a signal indicating contact of the delivery/deployment device with tissue to guarantee purchase of the implantable device with tissue upon deployment. The implantable device may be a tissue anchor with talons which shift from a delivery configuration to a deployed configuration. The sensors may be positioned along a distal end of the delivery/deployment device to indicate purchase of the device with tissue, to ensure purchase of the talons with tissue upon deployment. The sensors may include at least three sensors, which may be spaced apart from one another, to indicate full contact of the distal end of the delivery/deployment device with tissue. The sensors may optionally be aligned with the talons.
    Type: Application
    Filed: August 30, 2022
    Publication date: June 22, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Troy Anthony Giese, Joel T. Eggert, Christopher J. Koudela, Larry Michael Killeen, Nicholas Barron, Matthew P. Jones, Kristen Elizabeth Ott, James K. Cawthra, JR., Charanjit S. Rihal, Mackram F. Eleid
  • Publication number: 20230149685
    Abstract: An introducer assembly is adapted for deploying a medical device. The introducer assembly includes an introducer body that is adapted to accommodate a volume of blood therein. An antechamber is coupled with the introducer body. A first hemostasis valve is disposed proximal of the antechamber and fluidly couples the introducer body with the antechamber. A second hemostasis valve is disposed distal of the antechamber and is adapted to allow the medical device to pass therethrough.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 18, 2023
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Troy Anthony Giese, Christopher J. Koudela, Joel T. Eggert
  • Publication number: 20230149170
    Abstract: Implantable devices formed of materials which are not readily imageable are delivered and deployed with a deployment/delivery device having one or more sensors generating a signal indicating a condition of the implantable device relative to the deployment site. For instance, the signal indicates at least one or more of the following: purchase of the implantable device with tissue, level of purchase of the implantable device with tissue, the position of the implantable device relative to the deployment site, seating of tissue with respect to the implantable device, extent of contact of the implantable device with tissue, or further information about the implantable device and/or the delivery/deployment device. As such, the implantable device need not be imaged to determine the relationship of the implantable device relative to the deployment site.
    Type: Application
    Filed: August 30, 2022
    Publication date: May 18, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Troy Anthony Giese, Joel T. Eggert, Nicholas Barron, Matthew P. Jones, Kristen Elizabeth Ott
  • Patent number: 11648117
    Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 16, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl
  • Publication number: 20230123832
    Abstract: A clip and a clip deployment and delivery system. The clip may be engaged with a clip spreader such that simple relative movement, such as sliding movement, between the clip and clip spreader causes the clip and clip spreader to disengage from each other. A clip spreader actuator may be coupled to one arm of the clip spreader, extend distally around a distal end of the clip spreader, proximally along the other clip spreader arm, and to a proximal end at which the actuator may be controlled to open or close the clip spreader. The clips may be leaflet clips having teeth on one arm thereof and bumps on another arm thereof. The arms of the leaflet clip may be biased into a closed configuration by a flex zone which has an expanded portion extending laterally away from only one of the clip arms.
    Type: Application
    Filed: August 30, 2022
    Publication date: April 20, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Aaron Abbott, Joseph Walker, Joel T. Eggert, Daniel Shuey, Christopher J. Koudela, Troy A. Giese, Larry M. Killeen, James P. Rohl, Mitchell Nelson
  • Publication number: 20230102138
    Abstract: A medical device for cutting a suture during a minimally invasive procedure may include an elongate shaft having a proximal end, a distal end, and a central longitudinal axis, a handle disposed at the proximal end of the elongate shaft, the handle including an actuation mechanism, and a cutting blade disposed proximate the distal end of the elongate shaft. The cutting blade is axially translatable within the elongate shaft in response to operation of the actuation mechanism. The elongate shaft includes a distal port to receive a suture. The elongate shaft includes a transverse slot extending inward from an outer surface of the elongate shaft generally perpendicular to the central longitudinal axis. The elongate shaft includes a suture lumen extending from the distal port axially within the elongate shaft to the transverse slot. The cutting blade intersects the transverse slot adjacent the suture lumen.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Christopher J. Koudela, Aaron Abbott, Mitchell Nelson, Joel T. Eggert, James K. Cawthra, JR., Sandra L. Weeda
  • Patent number: 11597164
    Abstract: An implantable medical device includes a first component including a first material, a second component including a second material, and a fiber matrix including a plurality of fibers. The fiber matrix joins the first component to the second component. The fiber matrix includes a first a first portion connected to the first component, and a second portion connected to the second component. The first portion of the fiber matrix is interpenetrated with, and mechanically fixed to, the first material. The first portion of the fiber matrix directly contacts the first material.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: March 7, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Robert Wulfman, Joel T. Eggert, Diana K. Ma
  • Publication number: 20230062599
    Abstract: A tissue anchor and an anchor delivery and deployment system. The tissue anchor is shiftable between a delivery configuration when housed in anchor garage of the anchor delivery and deployment system, and a deployment configuration when deployed outside the anchor garage. The anchor has a plurality of talons which may be formed from a laser cut tube. The talons may taper, such as widthwise.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 2, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Joseph Walker, Troy A. Giese, Christopher J. Koudela, Daniel Shuey, Aaron Abbott, Joel T. Eggert, Larry M. Killeen, James P. Rohl, Mitchell Nelson
  • Publication number: 20220369906
    Abstract: Imaging devices, imaging systems, and methods are presented for determining distances, depths, and sizes of a viewed tissue or object through a visualization device. The device may include an elongated shaft and an imaging component. The imaging component may extend through the elongated shaft. The imaging component may have a lens and may be configured to capture an image of an area exterior of the elongated shaft in a field of view of the lens. A transparent cover may extend over the lens. The transparent cover may be configured to cause one or more identifiers to appear in the image. The imaging device may include or be used with a computing device to analyze image data of captured images.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: CRAIG MICHAEL WILSON, LANCE ADAM FREESEMAN, JAMES P. ROHL, AARON ABBOTT, JOEL T. EGGERT, JAMES A. KLOS, SANDRA L. WEEDA, NIRAJ PRASAD RAUNIYAR