Patents by Inventor Joel T. Eggert
Joel T. Eggert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240408353Abstract: Tissue puncture devices, and systems and methods for accessing tissue (e.g., cardiovascular tissue) according to the present disclosure may include a tubular sheath extending along a longitudinal axis, the tubular sheath having a proximal end and a distal end, a needle disposed coaxially in the sheath, the needle having a proximal end and a distal end and being movable along the longitudinal axis of sheath, and a needle control mechanism disposed at the proximal end of the needle, the needle control mechanism being configured to lock the distal end of the needle in a first position retracted within the distal end of the sheath, and release the needle to an unlocked second position such that the distal end of the needle is extendable beyond the distal end of the sheath.Type: ApplicationFiled: August 19, 2024Publication date: December 12, 2024Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Lance A. Freeseman, James P. Rohl, Joel T. Eggert, Eric M. Petersen, Craig M. Wilson, Douglas D. Pagoria, Todd College
-
Publication number: 20240374866Abstract: A medical system includes an introducer device having an elongate shaft defining a shaft lumen and a hub secured to a proximal region of the elongate shaft. The hub includes a primary channel extending through the hub and fluidly coupled with the shaft lumen and a secondary channel extending through the hub and fluidly coupled with the shaft lumen. A guide catheter is adapted to be advanced through the secondary channel and into the shaft lumen. A guidewire is adapted to be advanced through the secondary channel and into the shaft lumen. A working catheter is adapted to be advanced through the primary channel and into the shaft lumen when the guide catheter is positioned with a distal end of the guide catheter within the secondary channel, the working catheter including a catheter shaft including a distal region that is adapted to releasably engage the guidewire.Type: ApplicationFiled: May 7, 2024Publication date: November 14, 2024Applicant: Boston Scientific Scimed, Inc.Inventors: Joel T. Eggert, James P. Rohl, Aaron Abbott, Daniel Shuey, James K. Cawthra, JR., Joseph Barrett Fitzgerald
-
Patent number: 12133659Abstract: A medical device may include a plurality of links reciprocally movable between a loose configuration having a first rigidity and a compact configuration having a second rigidity greater than the first rigidity, wherein application of a force to a distalmost link of the plurality of links when the plurality of links are in the loose configuration causes the plurality of links to change orientation relative to one another, and application of the force to the distalmost link when the plurality of links are in the compact configuration does not cause the plurality of links to change orientation relative to one another.Type: GrantFiled: December 29, 2021Date of Patent: November 5, 2024Assignees: BOSTON SCIENTIFIC SCIMED, INC., UNIVERSITY OF MASSACHUSETTSInventors: Mark Kringle, Devon N. Arnholt, Mark W. Boden, David Shreeve, Joel T. Eggert, Christopher Macomber, Danilo Decio
-
Publication number: 20240341843Abstract: A catheter for ablating cardiac tissue through irreversible electroporation, the catheter comprises a tubular outer shaft and an electrode assembly extending distally from the distal end of the outer shaft. The electrode assembly defines a distally located central hub portion and a plurality of splines each extending proximally from the central hub portion. The electrode assembly comprises a flexible circuit having a flex circuit hub and a plurality of flex circuit branches integrally formed with and extending proximally from the flex circuit hub, the flexible circuit further including an outwardly-facing ablation electrode including an ablation electrode hub portion located on the flex circuit hub, and a plurality of ablation electrode branches integrally formed with the ablation electrode hub portion, each of the ablation electrode branches extending proximally along a portion of a respective one of the flex circuit branches and terminating in an ablation electrode proximal end.Type: ApplicationFiled: April 12, 2024Publication date: October 17, 2024Inventors: Nathan Paul Hagstrom, Emily Rose Whitwam, Joel T. Eggert, Jason John Matteson, JR.
-
Patent number: 12090284Abstract: Tissue puncture devices, and systems and methods for accessing tissue (e.g., cardiovascular tissue) according to the present disclosure may include a tubular sheath extending along a longitudinal axis, the tubular sheath having a proximal end and a distal end, a needle disposed coaxially in the sheath, the needle having a proximal end and a distal end and being movable along the longitudinal axis of sheath, and a needle control mechanism disposed at the proximal end of the needle, the needle control mechanism being configured to lock the distal end of the needle in a first position retracted within the distal end of the sheath, and release the needle to an unlocked second position such that the distal end of the needle is extendable beyond the distal end of the sheath.Type: GrantFiled: December 8, 2021Date of Patent: September 17, 2024Assignee: BOSTO SCIENTIFIC SCIMED, INC.Inventors: Lance A. Freeseman, James P. Rohl, Joel T. Eggert, Eric M. Petersen, Craig M. Wilson, Douglas D. Pagoria, Todd College
-
Patent number: 12082775Abstract: A visualization catheter includes an elongate shaft, a cap portion, and an offset balloon coupled to the distal end of the shaft. The elongate shaft includes a proximal end, a distal end, and a central axis defined therebetween. The cap portion is coupled to the distal end of the shaft. The cap portion also includes a visualization element and defines an aperture. The offset balloon is coupled to the distal end of the shaft and encapsulates the cap portion. The offset balloon defines a center point offset relative to the central axis of the shaft.Type: GrantFiled: December 16, 2016Date of Patent: September 10, 2024Assignees: BOSTON SCIENTIFIC SCIMED, INC., MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCHInventors: Benn Horrisberger, James P. Rohl, Lance A. Freeseman, James A. Klos, Joel T. Eggert, Arjun D. Sharma, Samuel J. Asirvatham
-
Publication number: 20240189105Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. In an embodiment, an anchor is movable between a delivery configuration and a deployed configuration, the anchor being in the delivery configuration when disposed within a delivery catheter, the anchor being in the deployed configuration when the anchor is moved beyond a distal end of the delivery catheter. When the anchor is in the delivery configuration it has a first outer dimension and when the anchor is in the deployed configuration it has a second outer dimension, the first outer dimension being smaller than the second outer dimension. The anchor is engageable with a papillary muscle or a heart wall when the anchor is in the deployed configuration and is also coupleable to an artificial chordae tendineae to anchor the artificial chordae tendineae to the papillary muscle or heart wall.Type: ApplicationFiled: January 11, 2024Publication date: June 13, 2024Applicant: Boston Scientific Scimed, Inc.Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
-
Publication number: 20240180546Abstract: A medical device for cutting a suture during a minimally invasive procedure includes an elongate shaft, a handle housing disposed at the proximal end of the elongate shaft, and a cutting blade disposed proximate the distal end of the elongate shaft. A proximal portion of the handle housing includes an actuation mechanism including a lever arm having a first portion disposed outside of the handle housing and extending distally from the proximal portion of the handle housing. Translation of the first portion of the lever arm relative to the handle housing axially translates the cutting blade within the elongate shaft. A medical device system may include a stand configured to support at least one medical device and a medical device securable to the stand.Type: ApplicationFiled: December 5, 2023Publication date: June 6, 2024Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Daniel Shuey, Christopher J. Koudela, Aaron Abbott, Mitchell Nelson, Joel T. Eggert, James K. Cawthra, JR., Sandra L. Weeda
-
Publication number: 20240156599Abstract: Devices, systems, and methods for delivery and deployment of an implantable device. The implantable device may be an anchor. The device includes an anchor garage configured to deliver the anchor, therein, to a target site, and an atraumatic shield movable with respect to the anchor garage. A biasing element biases the atraumatic shield into position with respect to the anchor garage. In some embodiments, the distal end of the anchor garage is a sharp tissue-penetrating end, and the atraumatic shield is biased distally over such sharp end. A limit stop may be provided to limit the extent to which the anchor garage extends distally, thereby limiting tissue penetration by the anchor garage and the depth of deployment of the anchor. An indicator may be positioned and/or configured to provide an indication of the relative positions of the anchor garage and the atraumatic shield.Type: ApplicationFiled: November 9, 2023Publication date: May 16, 2024Applicants: BOSTON SCIENTIFIC SCIMED, INC., MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCHInventors: Joel T. Eggert, Daniel Shuey, Troy Anthony Giese
-
Patent number: 11931528Abstract: A catheter configured to dynamically compensate for the impact of internal and external forces that act upon the catheter during use is disclosed. The catheter may include sensors configured to measure received forces on control cables that extend within the catheter. A controller, coupled to the sensors, may record received force measurements associated with a working position of a distal end of the catheter. The controller may monitor subsequently received forces to identify force variances that may deflect the distal end of the catheter from its working position and may apply a driving force to one or more of the control cables to minimize the force variances. Monitoring received forces during use and applying compensating drive forces may reduce deflection of the distal end of the catheter, increasing the accuracy and precision of an annuloplasty procedure while minimizing potential damage to cardiac tissue.Type: GrantFiled: June 3, 2020Date of Patent: March 19, 2024Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: James P. Rohl, Aaron Abbott, Daniel Shuey, Joel T. Eggert, James K. Cawthra, Jr., Jay E. Daley, Christopher Nguyen
-
Publication number: 20240081998Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.Type: ApplicationFiled: November 13, 2023Publication date: March 14, 2024Applicant: Boston Scientific Scimed, Inc.Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
-
Patent number: 11903831Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. In an embodiment, an anchor is movable between a delivery configuration and a deployed configuration, the anchor being in the delivery configuration when disposed within a delivery catheter, the anchor being in the deployed configuration when the anchor is moved beyond a distal end of the delivery catheter. When the anchor is in the delivery configuration it has a first outer dimension and when the anchor is in the deployed configuration it has a second outer dimension, the first outer dimension being smaller than the second outer dimension. The anchor is engageable with a papillary muscle or a heart wall when the anchor is in the deployed configuration and is also coupleable to an artificial chordae tendineae to anchor the artificial chordae tendineae to the papillary muscle or heart wall.Type: GrantFiled: July 2, 2020Date of Patent: February 20, 2024Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
-
Patent number: 11850152Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.Type: GrantFiled: July 2, 2020Date of Patent: December 26, 2023Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
-
Publication number: 20230404565Abstract: A delivery and deployment system having a control handle operable to deliver and/or deploy an implantable device, e.g., transluminally. A steering control system may include a steering control knob rotatable about the longitudinal axis of the handle to axially pull on a steering element to steer a flexible elongate member to deliver an implantable device to a desired site. An implantable device deployment system may include a slider selectively slidable with respect to the control handle to deploy an implantable device, and optionally to retain the implantable device in a delivery position. A tether adjustment system may include a knob rotatable about the handle's longitudinal axis to axially pull on a tether element to adjust the tension and/or length thereof. A tensioning and locking system may include a knob rotatable about the handle's longitudinal axis to shift a tensioning and locking device to set the tether element's tension and/or length.Type: ApplicationFiled: June 19, 2023Publication date: December 21, 2023Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and ResearchInventors: Daniel Shuey, Joel T. Eggert, Mitchell Nelson, Eric Jason Krause, Evan M Leingang, Greg Johnson, Greg Hoepfner
-
Publication number: 20230405275Abstract: A steering system for a steerable flexible elongate member such as for delivering a medical device and/or system. The steering system may be configured for two-way or four-way steering. A control knob is rotatable to control steering of the steerable flexible elongate member in a first direction or a second direction within a steering plane. In a four-way steering system, a first control knob steers the steerable flexible elongate member in a first steering plane, and a second control knob steers the steerable flexible elongate member in a second steering plane transverse to the first steering plane. The steering system may be supported on a stand configured to allow rotational support of the steering system. The stand may support two steering systems in a manner allowing relative axial translation therebetween.Type: ApplicationFiled: June 19, 2023Publication date: December 21, 2023Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and ResearchInventors: Mitchell Nelson, Aaron Abbott, Joel T. Eggert
-
Publication number: 20230404596Abstract: A delivery/deployment system having a control handle configured to control delivery and/or deployment of a medical device with arms configured to grasp tissue therebetween. The system may include a device spreader with arms engaging the medical device arms and controlled by an actuator operably coupled with the control handle. The control handle may include a lever pivotable to similarly pivot the device spreader and medical device arms open or closed. A device retention assembly may be provided to retain the medical device with respect to the device spreader. The control handle may include a release element movable to shift the retention assembly into a disengaged configuration allowing release of the medical device from the device spreader. The control handle may axially translate and/or rotate the device spreader into a desired position, and may be fixable in position by a handle lock once in a desired position.Type: ApplicationFiled: June 19, 2023Publication date: December 21, 2023Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and ResearchInventors: Daniel Shuey, Joel T. Eggert, Mitchell Nelson, Eric Jason Krause, Evan M Leingang, Greg Johnson, Greg Hoepfner
-
Publication number: 20230346543Abstract: A delivery/deployment system for delivering an implantable device within an implantable device housing and for deploying the implantable device from the implantable device housing. A stylet may be used to longitudinally advance or retract the implantable device with respect to the implantable device housing, such as to extend and deploy the implantable device from the implantable device housing. The delivery/deployment system has an implantable-device-extension-limiter arrangement configured to limit the distance which the implantable device may be extended from the implantable device housing. The delivery/deployment system optionally also has an implantable-device-rotation-limiter arrangement configured to limit rotation of the implantable device with respect to the implantable device housing.Type: ApplicationFiled: April 27, 2023Publication date: November 2, 2023Applicants: BOSTON SCIENTIFIC SCIMED, INC., MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCHInventors: Mitchell Nelson, Troy Anthony Giese, Joel T. Eggert, Jason John Matteson, JR., Christopher J. Koudela, Dana Sachs
-
Publication number: 20230338144Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.Type: ApplicationFiled: June 30, 2023Publication date: October 26, 2023Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Chrstopher J. Koudela
-
Patent number: 11737875Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.Type: GrantFiled: July 2, 2020Date of Patent: August 29, 2023Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
-
Publication number: 20230233324Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.Type: ApplicationFiled: April 5, 2023Publication date: July 27, 2023Applicant: Boston Scientific Scimed, Inc.Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl