Patents by Inventor Joel Weinstein

Joel Weinstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019286
    Abstract: A meter electronics (20) for using a Reynolds number to correct a mass flow rate measurement of a fluid is provided. The meter electronics (20) comprises an interface (401) configured to communicatively couple to a sensor assembly (10) containing the fluid and receive sensor signals from the sensor assembly (10) and a processing system (402) communicatively coupled to the interface (401). The processing system (402) is configured to store a Reynolds number-correction relationship, wherein the Reynolds number-correction relationship relates Reynolds number values with Reynolds number-based correction values, calculate a Reynolds number of the fluid using a measured mass flow rate value of the fluid, and determine a Reynolds number-based correction value using the Reynolds number and the Reynolds number-correction relationship.
    Type: Application
    Filed: September 9, 2021
    Publication date: January 18, 2024
    Applicant: MICRO MOTION, INC.
    Inventors: Andrew Timothy PATTEN, Aart R. PRUYSEN, Salvatore PITTI, Mark James BELL, Joel WEINSTEIN, Anthony William PANKRATZ
  • Patent number: 11486750
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency ?, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to velocity of sound and drive velocity. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the velocity of sound and effective diameter.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: November 1, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Publication number: 20220299350
    Abstract: An embodiment of a fin sensor is disclosed. The embodiment of the fin sensor has a base, the base coupled to a first fin and a second fin, the fin sensor further having at least two transducers coupled to the fins, the first fin being coupled to the second fin by at least one fin coupler.
    Type: Application
    Filed: August 20, 2019
    Publication date: September 22, 2022
    Applicant: MICRO MOTION, INC.
    Inventors: Martin Andrew SCHLOSSER, Frederick Scott SCHOLLENBERGER, Joel WEINSTEIN
  • Patent number: 11441934
    Abstract: A multichannel flow tube (300) for a vibratory meter (5), and a method of manufacturing the multichannel flow tube are provided. The multichannel flow tube comprises a tube perimeter wall (304), a first channel division (302b), and a first support structure (308a). The first channel division is enclosed within and coupled to the tube perimeter wall, forming a first channel (306b) and a second channel (306c). The first support structure is coupled to the tube perimeter wall and the first channel division.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: September 13, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Publication number: 20220155200
    Abstract: A system (700) for using a vapor pressure to determine a concentration of a component in a multi-component fluid is provided. The system (700) includes an electronics (710) communicatively coupled to a transducer (720) configured to sense a multi-component fluid. The electronics (710) is configured to determine a first vapor pressure, the first vapor pressure being a vapor pressure of a first component of the multi-component fluid, determine a second vapor pressure, the second vapor pressure being a vapor pressure of a second component of the multi-component fluid, and determine a multi-component vapor pressure, the multi-component vapor pressure being a vapor pressure of the multi-component fluid. The electronics (710) is also configured to determine a concentration of at least one of the first component and the second component based on the multi-component vapor pressure, the first vapor pressure, and the second vapor pressure.
    Type: Application
    Filed: April 3, 2019
    Publication date: May 19, 2022
    Applicant: MICRO MOTION, INC.
    Inventors: Joel WEINSTEIN, David Martinez MORETT
  • Publication number: 20220155199
    Abstract: A vibratory meter (5) for determining a vapor pressure of a fluid is provided. The vibratory meter (5) includes a meter assembly (10) having a fluid, and a meter electronics (20) communicatively coupled to the meter assembly (10). The vibratory meter (5) is configured to determine a vapor pressure of the fluid in the meter assembly (10) based on a static pressure of the fluid in the meter assembly (10).
    Type: Application
    Filed: April 3, 2019
    Publication date: May 19, 2022
    Applicant: MICRO MOTION INC.
    Inventors: Joel WEINSTEIN, David Martinez MORETT
  • Publication number: 20220146390
    Abstract: A meter electronics (20) for using a density measurement of a fluid to verify a vapor pressure is provided. The meter electronics (20) includes a processing system (200) communicatively coupled to a meter assembly (10) having the fluid, the processing system (200) is configured to determine a vapor pressure of the fluid by detecting a phase change of the fluid in the meter assembly (10), measure a density of the fluid based on a resonant frequency of the meter assembly (10), derive a vapor pressure from the measured density, and compare the determined vapor pressure with the derived vapor pressure.
    Type: Application
    Filed: April 3, 2019
    Publication date: May 12, 2022
    Applicant: MICRO MOTION, INC.
    Inventors: Joel WEINSTEIN, David Martinez MORETT
  • Publication number: 20220146295
    Abstract: A meter electronics (20) for determining a vapor pressure using a vapor pressure meter factor is provided. The meter electronics (20) comprises a processing system (200) communicatively coupled to a meter assembly (10). The processing system (200) is configured to provide a drive signal to the meter assembly (10) having a fluid, measure a drive gain of the drive signal provided to the meter assembly (10), and determine the vapor pressure of the fluid based on a previously determined relationship between the drive gain and a reference gas-liquid ratio.
    Type: Application
    Filed: April 3, 2019
    Publication date: May 12, 2022
    Applicant: MICRO MOTION, INC.
    Inventors: Joel WEINSTEIN, David Martinez MORETT
  • Patent number: 11280653
    Abstract: A vibratory meter (5), and methods of manufacturing the same are provided. The vibratory meter includes a pickoff, a driver, and a flow tube (700) comprising a tube perimeter wall with: a first substantially planar section (706a), a second substantially planar section (706b) coupled to the first substantially planar section to form a first angle ?1 (704), a third substantially planar section (706c), a fourth substantially planar section (706d), and a fifth substantially planar section (706e).
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: March 22, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Patent number: 11187564
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency ?, and measure a deflection of the multichannel flow tube with the pickoff. At least one fluid channel has an effective diameter that is related to the length of the flow tube.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: November 30, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Patent number: 10900348
    Abstract: Coriolis direct wellhead measurement devices and methods are provided. The devices and methods allow for continuous monitoring, more frequent data, and greater accuracy in quantitative and qualitative measurements of well performance. In an embodiment: an entrained gas severity of a wellhead is determined based on a determined drive gain threshold, at least one variable is output based on the determined entrained gas severity, and a respective confidence indicator correlating to the at least one variable is output. One mode of operation includes continually averaging the at least one variable over a predetermined time interval and outputting a respective single averaged data value. Another mode of operation includes outputting at least one instantaneous variable at predetermined and uniform time intervals. Diagnostic information and user alerts are also output to provide reliable decision making information to an operator.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 26, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein
  • Patent number: 10895483
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency ?, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to kinematic viscosity, inverse Stokes number, and drive frequency. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the kinematic viscosity, inverse Stokes number, and effective diameter.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 19, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Patent number: 10801871
    Abstract: A flow conduit assembly (300), a method for making the same, a brace bar (304), and a vibrating flowmeter including the flow conduit assembly are provided. The flow conduit assembly includes a first flow tube (302), a second flow tube (303), and a first brace bar (304) coupled to the first flow tube, wherein the first brace bar does not enclose the first flow tube and the second flow tube.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 13, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Patent number: 10794745
    Abstract: A vibratory meter (5), and methods of manufacturing the same are provided. The vibratory meter includes a pickoff (170l), a driver (180), and a flow tube (400) comprising a tube perimeter wall with: a first substantially planar section (406a), a second substantially planar section (406b) coupled to the first substantially planar section to form a first angle ?1 (404), and a first curved section (406c).
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 6, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Patent number: 10782171
    Abstract: The present invention relates to a system, a method, and a computer program product for detecting a process disturbance from entrained gas or particulates within a fluid flowing in a vibrating flow device (5). In one embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a void fraction and a void fraction threshold value. In another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value, a comparison between a void fraction and a void fraction threshold value, and a comparison between a measured mass flow rate and a nominal mass flow rate threshold value.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: September 22, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Charles Paul Stack, Joel Weinstein
  • Publication number: 20200249061
    Abstract: A multichannel flow tube (300) for a vibratory meter (5), and a method of manufacturing the multichannel flow tube are provided. The multichannel flow tube comprises a tube perimeter wall (304), a first channel division (302b), and a first support structure (308a). The first channel division is enclosed within and coupled to the tube perimeter wall, forming a first channel (306b) and a second channel (306c). The first support structure is coupled to the tube perimeter wall and the first channel division.
    Type: Application
    Filed: August 23, 2017
    Publication date: August 6, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200240823
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to kinematic viscosity, inverse Stokes number, and drive frequency; velocity of sound and drive velocity; or the length of the flow tube. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the kinematic viscosity, inverse Stokes number, and effective diameter; or velocity of sound and effective diameter.
    Type: Application
    Filed: August 23, 2017
    Publication date: July 30, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Patent number: 10718649
    Abstract: A vibratory meter (5) including a multi-channel flow tube (130) is provided. The vibratory meter (5) includes a meter electronics (20) and a meter assembly (10) communicatively coupled to the meter electronics (20). The meter assembly (10) includes the multi-channel flow tube (130, 330, 430, 530) comprising two or more fluid channels (132, 332, 432, 532) surrounded by a tube wall (134, 334, 434, 534). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) comprise a single integral structure. A driver (180) is coupled to the multi-channel flow tube (130, 330, 430, 530). The driver (180) is configured to vibrate the multi-channel flow tube (130, 330, 430, 530). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) are configured to deform in the same direction as the single integral structure in response to a drive signal applied to the driver (180).
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 21, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Martin Andrew Schlosser, Frederick Scott Schollenberger
  • Publication number: 20200191631
    Abstract: A first and second vibratory meter (5), and methods of manufacturing the same are provided. The first vibratory meter includes a pickoff (170l), a driver (180), and a flow tube (400) comprising a tube perimeter wall with: a first substantially planar section (406a), a second substantially planar section (406b) coupled to the first substantially planar section to form a first angle ??1#191 (404), and a first curved section (406c). The second vibratory meter includes a pickoff, a driver, and a flow tube (700) comprising a tube perimeter wall with: a first substantially planar section (706a), a second substantially planar section (706b) coupled to the first substantially planar section to form a first angle ??1#191 (704), a third substantially planar section (706c), a fourth substantially planar section (706d), and a fifth substantially planar section (706e).
    Type: Application
    Filed: August 23, 2017
    Publication date: June 18, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Patent number: D1019157
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: March 26, 2024
    Assignee: THE HAIR DOC BASS BRUSHES INC.
    Inventor: Joel Weinstein