Patents by Inventor Joel Zuhars

Joel Zuhars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220133333
    Abstract: A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
    Type: Application
    Filed: January 17, 2022
    Publication date: May 5, 2022
    Inventors: Louis-Philippe AMIOT, Alain RICHARD, Yannick BOUTIN, Joel ZUHARS, Yonik BRETON, Karine DUVAL, Herbert Andre JANSEN, Benoit PELLETIER, Catherine PROULX, Myriam VALIN
  • Publication number: 20220071713
    Abstract: A method for verifying the positional accuracy of a tracking reference device is provided that includes a tracking reference device attached to a bone. The bone is then registered with respect to a coordinate frame of the tracking reference device. A verification mark on the bone is then created where the position of the verification mark is recorded, by way of a tracking system, with respect to the tracking reference device. The positional accuracy of the tracking reference device is verified by instructing an end-effector of a robotic-assisted surgical device to align with the verification mark on the bone, and wherein if the end-effector does not align with the verification mark, the positional accuracy of the tracking reference device is compromised. A surgical system for performing the computerized method is also provided.
    Type: Application
    Filed: February 5, 2020
    Publication date: March 10, 2022
    Applicant: THINK SURGICAL, INC.
    Inventor: Joel Zuhars
  • Publication number: 20220023511
    Abstract: A biocompatible surgical article is provided for cutting biological tissue or implantation in contact therewith. The surgical article has a composition of tungsten carbide—nickel with a percentage of additional metal carbides present. A typical composition in total weight percentages is WC 85 to 95%, Cr3C2, Mo2C, VC each alone or in combination being present from 0 to 2%, and Ni constituting the remainder. The composition is formed to have a mean grain size of between 200 and 800 nm with a particle dispersion index (Pdl) corresponding to (the square of the standard deviation)/(mean grain size) of between 0 and 0.6, and in some embodiments between 0.02 and 0.2.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 27, 2022
    Applicants: THINK SURGICAL, INC., EXTRAMET PRODUCTS LLC
    Inventors: Timothy Pack, Christopher Douglas, Joel Zuhars, Micah Forstein
  • Patent number: 11229487
    Abstract: An optical tracking system includes at least one tracking array for generating and optically transmitting data between 1 and 2,000 MB/s. At least one tracker for optically receiving the optically transmitted data between 1 and 2,000 MB/s is also provided. The tracking system is used not only for tracking objects and sending tracking information quickly but also providing the user or other components in an operating room with additional data relevant to an external device such as a computer assisted device. Orthopedic surgical procedures such as total knee arthroplasty (TKA) are performed more efficiently and with better result with the optical tracking system.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: January 25, 2022
    Assignee: Think Surgical Inc.
    Inventors: Joel Zuhars, Saleh Tabandeh
  • Patent number: 11224443
    Abstract: A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: January 18, 2022
    Assignee: ORTHOSOFT ULC
    Inventors: Louis-Philippe Amiot, Alain Richard, Yannick Boutin, Joel Zuhars, Yonik Breton, Karine Duval, Herbert Andre Jansen, Benoit Pelletier, Catherine Proulx, Myriam Valin
  • Patent number: 11207114
    Abstract: A surgical device for pin insertion in a bone of a subject to aid in performing a bone cutting procedure is provided that includes a drive portion configured to drive a pin for insertion into the bone. The drive portion has a pin drive assembly with a shaft Q having a shaft proximal end. At least one magnet is associated with the shaft proximal end adapted for attraction and retention of the pin in the shaft proximal end. A spindle assembly is adapted to drive the shaft so as to rotate the pin into the bone to a degree of bone retention that overcomes the attraction and the retention of the pin in the shaft proximal end. An alignment system for surgical bone cutting procedures inclusive of the same is also provided along with a method for aligning a cutting guide on a subject's bone.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 28, 2021
    Assignee: THINK SURGICAL, INC.
    Inventors: Kianmajd Babak, Joel Zuhars
  • Publication number: 20210259781
    Abstract: A method and system is provided for registering the position and orientation (POSE) of a bone, where only data points that rest on the cortex of the bone are used to establish data points for determining the bone's POSE during a surgical procedure. The method collects the contact force and only collects a data point upon the removal at a specific threshold, which allows a digitizer to pass through the cartilage or soft tissue prior to the condition which defines when a data collection switch is closed. The collection of points is more consistent since the threshold value is normalized to hounds-field units of computed tomography (CT) data used for segmentation. The method utilizes a load cell to define a selection of a point based upon the release of what the point load applied is, as well as normalizing the activation threshold to the CT data of the bone.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 26, 2021
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Joel Zuhars, Eustache Felenc
  • Publication number: 20210205037
    Abstract: A system and process is provided for dynamically positioning or repositioning a robot in a surgical context based on workspace and task requirements, manipulator requirements, or user preferences to execute a surgical plan. The system and method accurately determines and indicates an optimal position for a robot with respect to a patient's anatomy before or during a surgical procedure. Optimal positions for a robot are intuitively indicated to a user. surgical procedures can illustratively include surgery to the knee joint, hip joint, spine, shoulder joint, elbow joint, ankle joint, jaw, a tumor site, joints of the hand or foot, and other appropriate surgical sites.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 8, 2021
    Applicant: Think Surgical, Inc.
    Inventors: Saleh Tabandeh, Joel Zuhars, Daniel Patrick Bonny, Timothy Pack, Randall Hanson, Michael Hoppe, Nathan A. Netravali
  • Publication number: 20210153946
    Abstract: A method for registering one or more surfaces associated with a bone for implant revision procedures includes a digitizer used to digitize surface points on remaining cement, bone surfaces, or both. The bone is adapted to hold a primary implant and from which the primary implant was removed. The position of the one or more surfaces associated with bone is registered by computing at least one of: a generic set of one or more planes using the surface points or a best match between a known implant geometry and the surface points. A computer-assisted surgical system is also provided to execute the method.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Applicant: Think Surgical, Inc.
    Inventors: Daniel P. Bonny, Joel Zuhars, Michael E. Hoppe
  • Publication number: 20210128252
    Abstract: A process for confirming registration of bones involved in a joint replacement procedure is provided that includes a three dimensional (3-D) models of the bones being generated. The bones are tracked with a tracking device attached to each of the bones to allow 6-degrees of freedom (DOF) tracking during the joint replacement procedure. The 3-D models to the bones are registered and the bones having the tracking device are moved. A corresponding motion in the 3-D models with the moving of the bones is then observed. The registration of the 3-D models to the bone when the observations of the 3-D models move in correspondence with the actual bones is then confirmed or an alarm when an algorithm detects the 3-D bone models move unexpectedly during the movement of the bones. A system for confirming registration of bones involved in the joint replacement procedure is also provided.
    Type: Application
    Filed: January 14, 2021
    Publication date: May 6, 2021
    Applicant: THINK SURGICAL, INC.
    Inventors: Joel Zuhars, Daniel P. Bonny, Saleh Tabandeh
  • Publication number: 20210100632
    Abstract: A method for performing a surgical procedure related to a pelvis of a patient comprises adjusting a length between ends of a digitizer device to a distance between opposite landmarks of the pelvis of the patient. The ends of the digitizer device are applied against the opposite landmarks of the pelvis. An inertial sensor unit of the digitizer device is initialized to set an orientation of the digitizer device relative to a medio-lateral axis of the patient, the medio-lateral axis of the patient being part of a pelvic coordinate system. A tool is navigated within the pelvic coordinate system during a surgical procedure.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 8, 2021
    Inventors: Francois PARADIS, Joel ZUHARS, Karine DUVAL, Mathieu CHEVRIER, Louis-Philippe AMIOT, Herbert JANSEN, Myriam VALIN, Don DYE, Isabelle ROBITAILLE, Simon FERRON-FORGET, Francois Baudoin
  • Patent number: 10932866
    Abstract: A method for removing an implant attached to a bone during revision joint replacement surgery includes a library of implant models. A series of surface points are collected on the implant with a digitizer. A best match is computed between the collected surface points and an implant model in the library of implant models to register the position of the implant model to the implant. A location is computed of a material-implant interface based on the geometry of the implant model and the registered position of the implant model. Material is removed at the material-implant interface to separate the implant from the bone. A computer-assisted surgical system is provided for performing the method.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 2, 2021
    Assignee: THINK SURGICAL, INC.
    Inventors: Daniel Patrick Bonny, Joel Zuhars, Michael E. Hoppe
  • Publication number: 20210038315
    Abstract: A method for removing an implant attached to a bone during revision joint replacement surgery includes a library of implant models. A series of surface points are collected on the implant with a digitizer. A best match is computed between the collected surface points and an implant model in the library of implant models to register the position of the implant model to the implant. A location is computed of a material-implant interface based on the geometry of the implant model and the registered position of the implant model. Material is removed at the material-implant interface to separate the implant from the bone. A computer-assisted surgical system is provided for performing the method.
    Type: Application
    Filed: September 24, 2020
    Publication date: February 11, 2021
    Applicant: Think Surgical, Inc.
    Inventors: Daniel Patrick Bonny, Joel Zuhars, Michael E. Hoppe
  • Publication number: 20210030477
    Abstract: A method for implantation of non-spherical or asymmetric implants is provided that includes devising a pre-surgical plan with pre-operative planning software operating on a computer to define at least one shape, orientation, type, size, geometry, or placement of an implant having at least a head component or a cup component in, on, or relative to an operative bone of a subject, the head component or the cup having at least two cross-sectional radii of different dimensions in, on, or relative to an operative bone of a subject. A computer-assisted surgical device is used to place the implant. The implant is positioned in, on, or relative to the bone by the computer-assisted surgical device in accordance with the pre-surgical plan. A system for devising a pre-surgical plan for the implant, and positioning the implant in, on, or relative to a bone in accordance with the pre-surgical plan is also provided.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Applicant: THINK SURGICAL, INC.
    Inventors: Joel Zuhars, Daniel Patrick Bonny
  • Patent number: 10905496
    Abstract: A process for confirming registration of bones involved in a joint replacement procedure is provided that includes a three dimensional (3-D) models of the bones being generated. The bones are tracked with a tracking device attached to each of the bones to allow 6-degrees of freedom (DOF) tracking during the joint replacement procedure. The 3-D models to the bones are registered and the bones having the tracking device are moved. A corresponding motion in the 3-D models with the moving of the bones is then observed. The registration of the 3-D models to the bone when the observations of the 3-D models move in correspondence with the actual bones is then confirmed or an alarm when an algorithm detects the 3-D bone models move unexpectedly during the movement of the bones. A system for confirming registration of bones involved in the joint replacement procedure is also provided.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: February 2, 2021
    Assignee: THINK SURGICAL, INC.
    Inventors: Joel Zuhars, Daniel P. Bonny, Saleh Tabandeh
  • Publication number: 20200405394
    Abstract: A method and system are provided to determine an optimal placement with respect to position and orientation for one or more bones in a workspace of a robot to improve robotic cutting and maximize the robot workspace during a robotic surgical procedure. The method is additionally useful to aid a user in positioning and orienting the bones in the operating room at the determined position and orientation.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 31, 2020
    Applicant: THINK SURGICAL, INC.
    Inventors: Jay Roldan, Min Yang Jung, Feimo Shen, Muhammad Afnan, Barry Voorhees, Micah Forstein, CJ Geering, Koteswara Ruvva, Joel Zuhars
  • Patent number: 10864050
    Abstract: A system and process is provided for dynamically positioning or repositioning a robot in a surgical context based on workspace and task requirements, manipulator requirements, or user preferences to execute a surgical plan. The system and method accurately determines and indicates an optimal position for a robot with respect to a patient's anatomy before or during a surgical procedure. Optimal positions for a robot are intuitively indicated to a user, surgical procedures can illustratively include surgery to the knee joint, hip joint, spine, shoulder joint, elbow joint, ankle joint, jaw, a tumor site, joints of the hand or foot, and other appropriate surgical sites.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 15, 2020
    Assignee: Think Surgical, Inc.
    Inventors: Saleh Tabandeh, Joel Zuhars, Daniel Patrick Bonny, Timothy Pack, Randall Hanson, Michael Hoppe, Nathan A. Netravali
  • Publication number: 20200375670
    Abstract: A calibration device is provided having a body with an exterior surface configured for placement about a tool such that the body rotates about a tool axis. One or more fiducial marker is positioned on the exterior surface and in communication with a tracking system. A fixed fiducial marker array is provided that is also in communication with the tracking system. A calibration tool defines the tool axis relative to the fiducial marker array. A surgical system is also provided with a tracking module that calculates a center point of the rotation or a normal vector to the circular path to define a tool axis orientation. A method of using the surgical system and defining a tool axis relative to a fiducial marker array is provided. A system for defining a robot link orientation or tracking a tool a medical procedure and a fiducial marker array are provided.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Applicant: Think Surgical, Inc.
    Inventors: Daniel Patrick Bonny, Joel Zuhars, Nathan A. Netravali
  • Publication number: 20200367913
    Abstract: A system for improved surgical cutting in the presence of surgical debris, the system comprising: a surgical cutter comprising a distal end and a proximal end, the distal end of the surgical cutter being configured to cut bone; a debris detection system mounted to the surgical cutter, the debris detection system comprising: a light source for emitting light; a receiver for receiving light emitted from the light source; and a microprocessor for determining a change in a characteristic of the light emitted by the light source and received by the receiver, and for determining the presence and/or amount of surgical debris present at a surgical site using a change in a characteristic of the light emitted by the light source and received by the receiver; and a controller for varying, based on the presence and/or amount of surgical debris present at the surgical site, at least one of (i) an amount of irrigation supplied to the surgical site, (ii) the feed rate of the surgical cutter, (iii) the direction of the surgi
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Micah Forstein, Joel Zuhars
  • Publication number: 20200368040
    Abstract: A system and process for performing orthopedic surgery is provided that uses a tibial trial system in total knee arthroplasty for assessing optimal internal-external rotation and posterior tibial slope, and for measuring the rotation of a tibial trial throughout flexion-extension to determine and mark the best position for the final tibial component. The tibial trial system determines the internal-external location on a patient specific basis with improved component placement well within the present manual methods. One particular advantage to the tibial trial system is to assess the natural internal-external rotation that the tibial component will experience relative to the femoral component during flexion-extension as opposed to simply recording and balancing forces on a static tibial trial. The invention disclosed herein may also be adapted to be used with a computer assisted surgical device. Such surgical devices include active, semi-active, and haptic devices as well as articulating drill and saw systems.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: Think Surgical, Inc.
    Inventors: Daniel Patrick Bonny, Joel Zuhars