Patents by Inventor Joerg Bredno

Joerg Bredno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9332952
    Abstract: In Positron Emission Tomography, a time window (260) and an energy window (225) are dynamically adjusted, based on an attenuation map, count rate, clinical application, discrimination tailoring, and/or offline discrimination tailoring. Detected radiation events are filtered using the dynamically adjusted energy and time windows into scattered events, random events, and true events. The true events are input to image reconstruction, correction, and error analysis.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: May 10, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sven Prevrhal, Eberhard Sebastian Hansis, Jason Stephen Wiener, Joerg Bredno, David Sowards-Emmerd, Lingxiong Shao
  • Patent number: 9317911
    Abstract: A system and method are provided to automatically assess a confidence in imaging data based on a proposed diagnostic task or treatment decision, by determining one or more imaging quality indicators relating to the imaging data corresponding to a confidence of the proposed diagnostic task or treatment decision, comparing those imaging quality indicators with confidence benchmark values, and determining a confidence value indicative of the confidence in the imaging data for purposes of performing the proposed diagnostic task or making the proposed treatment decision.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: April 19, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mark Olszewski, Joerg Bredno
  • Publication number: 20160098590
    Abstract: The subject disclosure presents systems and methods for separating colors in an image by automatically and adaptively adjusting reference vectors based on information specific to the assay being imaged, resulting in an optimized unmixing process that provides stain information that is physically and physiologically plausible. The reference vectors are optimized iteratively, based on minimizing non-negative color contributions, background contributions, high-frequencies in color channels specific to background or unwanted fluorescence, signals from known immunohistochemical markers, and pairs of stains known to carry physiologically independent information. Adjustments to the reference vectors may be allowed within a range that is predetermined based on measuring colors from multiple input images.
    Type: Application
    Filed: May 28, 2014
    Publication date: April 7, 2016
    Inventors: Joerg Bredno, Lou Dietz, Jim F. Martin
  • Patent number: 9299171
    Abstract: A method comprises: acquiring imaging data using a tomographic radiological imaging apparatus (10); updating a calibration (42, 52) based on current information about the imaging apparatus; calibrating the imaging data using the up-to-date calibration; and reconstructing the calibrated imaging data to generate an image. The updating may be based on a current state of an idle or parked imaging modality that is not used in acquiring the imaging data, or on a measurement acquired together with the imaging data, or on the imaging data itself. For cone-beam computed tomography (CBCT) imaging data, the updating may comprise determining an intensity scale based upon intensity of at least one air pixel measured during the acquiring of the CBCT imaging data and updating an air scan template (60) by the intensity scale.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Joerg Bredno, David Sowards-Emmerd, Jason Stephen Wiener, Eberhard Sebastian Hansis
  • Patent number: 9153012
    Abstract: When correcting for artifacts on an attenuation map caused by an artifact source in a computed tomography image, nuclear images are reconstructed two or more times, each time using a different correction technique or uncorrected attenuation data. Corresponding voxels in the reconstructed images are compared to identify local areas that change, i.e., are fragile and therefore low-confidence, and areas that do not vary or exhibit little variance among the plurality of reconstructed images and are thus accorded a higher confidence. The reconstructed nuclear image is overlaid with color encoding indicative of the amount of confidence accorded to each voxel value obtained by attenuation-corrected tomographic reconstruction.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: October 6, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Joerg Bredno, Sven Prevrhal, Eberhard Sevastian Hansis, David Sowards-Emmerd
  • Patent number: 9125616
    Abstract: A method includes obtaining both first inflow and first perfusion metrics for non-healthy tissue of interest, obtaining both second inflow and second perfusion metrics for healthy tissue of interest, and concurrently presenting both the first flow and perfusion metrics for the non-healthy tissue of interest and both the second flow and perfusion metrics for the healthy tissue of interest.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: September 8, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Joerg Bredno, Max Wintermark
  • Publication number: 20150103972
    Abstract: An x-ray computed tomography system (14) includes a gantry (15), a plurality of elements (18), and one or more processors (28). The gantry (15) moves to different orientations and generates x-ray data which includes image projection data at a plurality of the orientations. The plurality of elements (18) connect to the gantry and cause x-ray attenuation of the generated projection data. The one or more processors (28) are programmed to receive (60) the generated x-ray data and decompose (62) the received image projection data into indications of relative positions of the plurality of elements at different orientations of the gantry.
    Type: Application
    Filed: May 16, 2013
    Publication date: April 16, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Joerg Bredno, Eberhard Sebastian Hansis
  • Patent number: 8965070
    Abstract: Despite intense research activities in the field of computer-aided diagnosis methods of computer vision, automated classification or comparable algorithmic solutions are not regularly used and even less regularly trusted by physicians. According to an exemplary embodiment of the present invention, a confidence interval of the performed diagnosis is visualized and a standardized feedback mechanism is provided which allows for an interactive improvement of the method.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: February 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Joerg Bredno
  • Publication number: 20150003708
    Abstract: A medical imaging system includes a data store (16) of re-construction procedures, a selector (24), a reconstructor (14), a fuser (28), and a display (22). The data store (16) of reconstruction procedures identifies a plurality of reconstruction procedures. The selector (24) selects at least two reconstruction procedures from the data store of reconstruction procedures based on a received input, each reconstruction procedure optimized for one or more image characteristics. The reconstructor (14) concurrently performs the selected at least two reconstruction procedures, each reconstruction procedure generates at least one image (26) from the at least one data store of imaging data (12). The fuser (28) fuses the at least two generated medical images to create a medical diagnostic image which includes characteristics from each generated image (26). The display (22) displays the medical diagnostic image.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 1, 2015
    Inventors: Sven Prevrhal, Eberhard Sebastian Hansis, Joerg Bredno, Jinghan Ye, Xiyun Song, Chi-Hua Tung, Lingxiong Shao
  • Patent number: 8908939
    Abstract: A system includes a perfusion information determiner (124) that determines perfusion information based on a combination of pre-perfusion scan image data and perfusion scan image data.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: December 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Joerg Bredno, Max Wintermark
  • Publication number: 20140257096
    Abstract: In Positron Emission Tomography, a time window (260) and an energy window (225) are dynamically adjusted, based on an attenuation map, count rate, clinical application, discrimination tailoring, and/or offline discrimination tailoring. Detected radiation events are filtered using the dynamically adjusted energy and time windows into scattered events, random events, and true events. The true events are input to image reconstruction, correction, and error analysis.
    Type: Application
    Filed: October 3, 2012
    Publication date: September 11, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Sven Prevrhal, Eberhard Sebastian Hansis, Jason Stephen Wiener, Joerg Bredno, David Sowards-Emmerd, Lingxiong Shao
  • Publication number: 20140119630
    Abstract: A hybrid imaging system including a first imaging system configured to acquire low resolution anatomical data of a first field of view of an anatomical structure. A second imaging system is configured to acquire functional data of the first field of view of the anatomical structure. A reconstruction processor is configured to reconstruct the functional data based on attenuation data into an attenuation corrected image. In response to the attenuation corrected image showing regions of interest, with the first imaging system or another imaging system acquiring high resolution data of one or more portions of the first field of view containing the regions of interest. The reconstruction processor reconstructs the high resolution anatomical data into one or more high resolution images of the regions of interest.
    Type: Application
    Filed: May 23, 2012
    Publication date: May 1, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: David Sowards-Emmerd, Joerg Bredno, Eberhard Sebastian Hansis, Sven Prevrhal
  • Publication number: 20140119611
    Abstract: A nuclear imaging apparatus (8) acquires nuclear imaging data comprising events wherein each event records at least spatial localization information and a timestamp for a nuclear decay event. An event-preserving image reconstruction module (22) reconstructs the nuclear imaging data using an event-preserving reconstruction algorithm to generate an image represented as an event-preserving reconstructed image dataset (ID) comprising for each event the timestamp and at least one spatial voxel assignment. One or more structures are identified in the image and independent motion compensation is performed for each structure. In one approach, an events group is identified corresponding to the structure comprising events assigned to the structure by the event-preserving reconstructed image dataset; a time binning of the events of each events group is optimized based on a motion profile for the structure; time bin images are generated; and the structure is spatially registered in the time bin images.
    Type: Application
    Filed: May 8, 2012
    Publication date: May 1, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Sven Prevrhal, Joerg Bredno, Amy Perkins, Patrick Olivier
  • Patent number: 8660333
    Abstract: A method includes determining, via a processor, functional information about tissue of interest in image data for a functional image acquisition based on reference information generated based on non-tissue of interest.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 25, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Joerg Bredno, Max Wintermark
  • Publication number: 20140014828
    Abstract: A method comprises: acquiring imaging data using a tomographic radiological imaging apparatus (10); updating a calibration (42, 52) based on current information about the imaging apparatus; calibrating the imaging data using the up-to-date calibration; and reconstructing the calibrated imaging data to generate an image. The updating may be based on a current state of an idle or parked imaging modality that is not used in acquiring the imaging data, or on a measurement acquired together with the imaging data, or on the imaging data itself. For cone-beam computed tomography (CBCT) imaging data, the updating may comprise determining an intensity scale based upon intensity of at least one air pixel measured during the acquiring of the CBCT imaging data and updating an air scan template (60) by the intensity scale.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 16, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Joerg Bredno, David Sowards-Emmerd, Jason Stephen Wiener, Eberhard Sebastian Hansis
  • Patent number: 8565371
    Abstract: The invention relates to a rotational X-ray device (100), for example a CT scanner, for generating phase contrast images of an object (1). In a particular embodiment of the device (100), a plurality of X-ray sources (11), an X-ray detector (30), and an analyzer grating (G2) are attached to a rotatable gantry (20), while a ring-shaped phase grating (G1) is stationary. The X-ray sources are disposed such that X-rays first pass an object under study before traversing the phase grating (G1) and subsequently the analyzer grating (G2). This is achieved by either shifting the X-ray sources axially with respect to the ring-shaped phase grating (G1) or by disposing the X-ray sources in the interior of the ring. Moreover, the phase grating (G1) and the analyzer (G2) shall have spatially varying relative phase (and/or periodicity), for example realized by line grids that are tilted with respect to each other.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: October 22, 2013
    Assignee: Koninklijke Philips N.V.
    Inventor: Joerg Bredno
  • Patent number: 8552858
    Abstract: Scattered radiation has non-intuitive properties. A signalling system (28) is presented which provides a perceptible signal (34) being indicative of a predicted or measured spatial distribution of scattered radiation. An embodiment provides for easy assessment of the individual risk of scattered radiation exposure for personnel working in an environment exposed to scattered radiation. A method for predicting a distribution of scattered radiation takes into account at least one object related parameter (18) and at least one radiation related parameter (22) and, in response hereto, predicts a distribution of scattered radiation.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 8, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Steffen Gunther Hohmann, Christian Baeumer, Joerg Bredno, Norbert Conrads, Olivier Ecabert, Klaus Juergen Engel, Christoph Herrmann, Rainer Kiewitt, Helko Lehmann
  • Publication number: 20130243298
    Abstract: When correcting for artifacts on an attenuation map caused by an artifact source in a computed tomography image, nuclear images are reconstructed two or more times, each time using a different correction technique or uncorrected attenuation data. Corresponding voxels in the reconstructed images are compared to identify local areas that change, i.e., are fragile and therefore low-confidence, and areas that do not vary or exhibit little variance among the plurality of reconstructed images and are thus accorded a higher confidence. The reconstructed nuclear image is overlaid with color encoding indicative of the amount of confidence accorded to each voxel value obtained by attenuation-corrected tomographic reconstruction.
    Type: Application
    Filed: November 22, 2011
    Publication date: September 19, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Joerg Bredno, Sven Prevrhal, Eberhard Sevastian Hansis, David Sowards-Emmero
  • Publication number: 20130222430
    Abstract: A method includes displaying at least one of projection data or reconstructed image data having visually observable artifacts, wherein the at least one of the projection data or the reconstructed image data corresponds to an imaging examination of an object or subject and displaying, concurrently with the at least one of the projection data or the reconstructed image data, sample images with known artifacts. The method further includes identifying one or more of the sample images having artifacts similar to the visually observable artifacts in the at least one of the projection data or the reconstructed image data. The method further includes displaying information about the identified one or more of the sample images, wherein the information includes information related to mitigating the visually observable artifacts.
    Type: Application
    Filed: October 20, 2011
    Publication date: August 29, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Joerg Bredno, Eberhard Sebastian Hansis, David Sowards-Emmerd
  • Patent number: 8491188
    Abstract: A method for acquiring X-ray image data of an imaging volume is disclosed, the method using a detector and a distributed X-ray source structure having a plurality of single source elements, which are uniformly distributed with a common pitch to each other, the method comprises moving the distributed X-ray source structure and/or the detector with respect to the imaging volume, importantly, the maximum moving distance dmax of the distributed X-ray source structure during the acquisition of the X-ray image data is limited to the length lp of the pitch. Emitting of X-rays from the distributed X-ray source structure and generating a plurality of signals in response to the X-rays incident upon the detector are executed during the movement.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: July 23, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Gereon Vogtmeier, Joerg Bredno, Juergen Weese