Patents by Inventor Joerg Seeger

Joerg Seeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240265169
    Abstract: A parameterizable software-implemented interface is for data exchange of at least one process variable between a simulation model of a drive controller of an electric drive and a periphery of the drive controller of the electric drive.
    Type: Application
    Filed: January 23, 2024
    Publication date: August 8, 2024
    Inventors: Andreas Selig, Joerg Seeger, Wolfgang Rueppel
  • Publication number: 20180245184
    Abstract: The invention relates to a sliding element composed of a copper alloy which contains the following constituents (in % by weight): from 2.0 to 3.0% of Ni, from 0.45 to 1.0% of Si, up to 1.5% of Ti and/or Cr, where the sum of the Ni content [Ni] and the Ti content [Ti]: [Ni]+[Ti] is ?0.2%, optionally from 0.05 to 1.5% of Co, optionally in each case from 0.05 to 0.1% of Mg, Al, Fe, optionally from 0.01 to 0.1% of Pb, optionally from 0.002 to 0.01% of P, a balance of Cu and unavoidable impurities, wherein the ratio of the sum of the Ni content [Ni], Ti content [Ti] and Cr content [Cr] to the Si content [Si] is such that: 4.3?([Ni]+[Ti]+[Cr])/[Si]?6.5.
    Type: Application
    Filed: January 19, 2018
    Publication date: August 30, 2018
    Inventors: Hans-Achim KUHN, Joerg SEEGER
  • Publication number: 20140014239
    Abstract: A process for manufacturing copper-nickel-silicon alloys includes the sequential steps of casting the copper alloy; hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; solutionizing the cast copper-base alloy at a temperature and for a time effective to substantially form a single phase alloy; first age annealing the alloy at a temperature and for a time effective to precipitate an amount of a second phase effective to form a multi-phase alloy having silicides; cold working the multi-phase alloy to effect a second reduction in cross-sectional area; and second age annealing the multiphase alloy at a temperature and for a time effective to precipitate additional silicides thereby raising conductivity, wherein the second age annealing temperature is less than the first age annealing temperature.
    Type: Application
    Filed: April 17, 2013
    Publication date: January 16, 2014
    Applicants: Wieland-Werke AG, GBC Metals, LLC
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 8430979
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 30, 2013
    Assignee: GBC Metals, LLC
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 8257515
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 4, 2012
    Assignees: GBC Metals, LLC, Wieland-Werke, AG
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 7354489
    Abstract: A lead-free copper alloy based on Cu—Zn—Si and a method of manufacture thereof. The copper alloy is built on the basis of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Wieland-Werke AG
    Inventors: Uwe Hofmann, Wolfgang Dannenmann, Doris Humpenoeder-Boegel, legal representative, Monika Breu, Guenter Schmid, Joerg Seeger, Andreas Boegel
  • Publication number: 20070131315
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Application
    Filed: October 26, 2006
    Publication date: June 14, 2007
    Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
  • Patent number: 7182823
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, from 0.5% to 1.5% of silicon, and the balance is copper and inevitable impurities. Further, the total nickel plus cobalt content is from 1.7% to 4.3%, the ratio of nickel to cobalt is from 1.01:1 to 2.6:1, the amount of (Ni+Co)/Si is between 3.5 and 6, the electrical conductivity is in excess of 40% IACS and the yield strength is in excess of 95 ksi. An optional inclusion is up 1% of silver. A process to manufacture the alloy includes the sequential steps of (a). casting; (b). hot working; (c). solutionizing; (d). first age annealing; (e). cold working; and (f). second age annealing wherein the second age annealing temperature is less than the first age annealing temperature.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: February 27, 2007
    Assignee: Olin Corporation
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Publication number: 20060076090
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Application
    Filed: October 7, 2005
    Publication date: April 13, 2006
    Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
  • Publication number: 20040241038
    Abstract: A lead-free copper alloy on the base of Cu—Zn—Sn and a method of manufacture. The copper alloy is built on the base of copper, zinc and tin without toxic additives and consists of: 60 to 70% Cu, 0.5 to 3.5% Sn and the further matrix-active elements: 0.01 to 0.5% Fe and/or Co, 0.01 to 0.5% Ni, 0.01 to 0.5% Mn and/or Si, the remainder Zn and unavoidable impurities. Selectively up to 3% Mg, up to 0.2% P and up to 0.5% Ag, Al, As, Sb, Ti, Zr can be added. The demands for a health-conscious and ecological compatibility are thus naturally met.
    Type: Application
    Filed: February 25, 2004
    Publication date: December 2, 2004
    Inventors: Uwe Hofmann, Monika Breu, Harald Siegele, Andreas Boegel, Doris Humpenoeder-Boegel, Joerg Seeger
  • Publication number: 20040234411
    Abstract: A lead-free copper alloy on the base of Cu—Zn—Si and a method of manufacture. The copper alloy is built on the base of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities. The demands for a health-conscious and ecological compatibility are thus naturally met.
    Type: Application
    Filed: February 26, 2004
    Publication date: November 25, 2004
    Inventors: Uwe Hofmann, Wolfgang Dannenmann, Andreas Boegel, Monika Breu, Guenter Schmid, Joerg Seeger
  • Publication number: 20040166017
    Abstract: An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu—Ti—X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 105 ksi and the electrical conductivity is at least 50% IACS.
    Type: Application
    Filed: September 5, 2003
    Publication date: August 26, 2004
    Applicants: Olin Corporation, Wieland-Werke AG
    Inventors: Ronald N. Caron, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Doris Humpenoder-Bogel, Hans-Achim Kuhn, Joerg Seeger
  • Patent number: 6749699
    Abstract: A copper alloy that consists essentially of, by weight, from 0.15% to 0.7% of chromium, from 0.005% to 0.3% of silver, from 0.01% to 0.15% of titanium, from 0.01% to 0.10% of silicon, up to 0.2% of iron, up to 0.5% of tin, and the balance copper and inevitable impurities has high strength, a yield strength in excess of 80 ksi, and high electrical conductivity, in excess of 80% IACS. The alloy further has substantially isotropic bend characteristics when the processing route includes a solution heat anneal above 850° C. and subsequent cold rolling into sheet, strip or foil interspersed by bell annealing. As a result, the alloy is particularly suited for forming into box-type electrical connectors for both automotive or multimedia applications. The alloy is also suitable for forming into a rod, wire or section.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: June 15, 2004
    Assignees: Olin Corporation, Wieland-Werke AG
    Inventors: Andreas Bögel, Jörg Seeger, Hans-Achim Kuhn, John F. Breedis, Ronald N. Caron, Derek E. Tyler
  • Publication number: 20040079456
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 29, 2004
    Applicants: Onlin Corporation, Wieland Werke A.G.
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger