Patents by Inventor Joerg Seeger
Joerg Seeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240265169Abstract: A parameterizable software-implemented interface is for data exchange of at least one process variable between a simulation model of a drive controller of an electric drive and a periphery of the drive controller of the electric drive.Type: ApplicationFiled: January 23, 2024Publication date: August 8, 2024Inventors: Andreas Selig, Joerg Seeger, Wolfgang Rueppel
-
Publication number: 20180245184Abstract: The invention relates to a sliding element composed of a copper alloy which contains the following constituents (in % by weight): from 2.0 to 3.0% of Ni, from 0.45 to 1.0% of Si, up to 1.5% of Ti and/or Cr, where the sum of the Ni content [Ni] and the Ti content [Ti]: [Ni]+[Ti] is ?0.2%, optionally from 0.05 to 1.5% of Co, optionally in each case from 0.05 to 0.1% of Mg, Al, Fe, optionally from 0.01 to 0.1% of Pb, optionally from 0.002 to 0.01% of P, a balance of Cu and unavoidable impurities, wherein the ratio of the sum of the Ni content [Ni], Ti content [Ti] and Cr content [Cr] to the Si content [Si] is such that: 4.3?([Ni]+[Ti]+[Cr])/[Si]?6.5.Type: ApplicationFiled: January 19, 2018Publication date: August 30, 2018Inventors: Hans-Achim KUHN, Joerg SEEGER
-
Publication number: 20140014239Abstract: A process for manufacturing copper-nickel-silicon alloys includes the sequential steps of casting the copper alloy; hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; solutionizing the cast copper-base alloy at a temperature and for a time effective to substantially form a single phase alloy; first age annealing the alloy at a temperature and for a time effective to precipitate an amount of a second phase effective to form a multi-phase alloy having silicides; cold working the multi-phase alloy to effect a second reduction in cross-sectional area; and second age annealing the multiphase alloy at a temperature and for a time effective to precipitate additional silicides thereby raising conductivity, wherein the second age annealing temperature is less than the first age annealing temperature.Type: ApplicationFiled: April 17, 2013Publication date: January 16, 2014Applicants: Wieland-Werke AG, GBC Metals, LLCInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Patent number: 8430979Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.Type: GrantFiled: October 26, 2006Date of Patent: April 30, 2013Assignee: GBC Metals, LLCInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Patent number: 8257515Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).Type: GrantFiled: October 7, 2005Date of Patent: September 4, 2012Assignees: GBC Metals, LLC, Wieland-Werke, AGInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Patent number: 7354489Abstract: A lead-free copper alloy based on Cu—Zn—Si and a method of manufacture thereof. The copper alloy is built on the basis of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities.Type: GrantFiled: February 26, 2004Date of Patent: April 8, 2008Assignee: Wieland-Werke AGInventors: Uwe Hofmann, Wolfgang Dannenmann, Doris Humpenoeder-Boegel, legal representative, Monika Breu, Guenter Schmid, Joerg Seeger, Andreas Boegel
-
Publication number: 20070131315Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).Type: ApplicationFiled: October 26, 2006Publication date: June 14, 2007Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
-
Patent number: 7182823Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, from 0.5% to 1.5% of silicon, and the balance is copper and inevitable impurities. Further, the total nickel plus cobalt content is from 1.7% to 4.3%, the ratio of nickel to cobalt is from 1.01:1 to 2.6:1, the amount of (Ni+Co)/Si is between 3.5 and 6, the electrical conductivity is in excess of 40% IACS and the yield strength is in excess of 95 ksi. An optional inclusion is up 1% of silver. A process to manufacture the alloy includes the sequential steps of (a). casting; (b). hot working; (c). solutionizing; (d). first age annealing; (e). cold working; and (f). second age annealing wherein the second age annealing temperature is less than the first age annealing temperature.Type: GrantFiled: June 30, 2003Date of Patent: February 27, 2007Assignee: Olin CorporationInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Publication number: 20060076090Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).Type: ApplicationFiled: October 7, 2005Publication date: April 13, 2006Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
-
Publication number: 20040241038Abstract: A lead-free copper alloy on the base of Cu—Zn—Sn and a method of manufacture. The copper alloy is built on the base of copper, zinc and tin without toxic additives and consists of: 60 to 70% Cu, 0.5 to 3.5% Sn and the further matrix-active elements: 0.01 to 0.5% Fe and/or Co, 0.01 to 0.5% Ni, 0.01 to 0.5% Mn and/or Si, the remainder Zn and unavoidable impurities. Selectively up to 3% Mg, up to 0.2% P and up to 0.5% Ag, Al, As, Sb, Ti, Zr can be added. The demands for a health-conscious and ecological compatibility are thus naturally met.Type: ApplicationFiled: February 25, 2004Publication date: December 2, 2004Inventors: Uwe Hofmann, Monika Breu, Harald Siegele, Andreas Boegel, Doris Humpenoeder-Boegel, Joerg Seeger
-
Publication number: 20040234411Abstract: A lead-free copper alloy on the base of Cu—Zn—Si and a method of manufacture. The copper alloy is built on the base of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities. The demands for a health-conscious and ecological compatibility are thus naturally met.Type: ApplicationFiled: February 26, 2004Publication date: November 25, 2004Inventors: Uwe Hofmann, Wolfgang Dannenmann, Andreas Boegel, Monika Breu, Guenter Schmid, Joerg Seeger
-
Publication number: 20040166017Abstract: An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu—Ti—X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 105 ksi and the electrical conductivity is at least 50% IACS.Type: ApplicationFiled: September 5, 2003Publication date: August 26, 2004Applicants: Olin Corporation, Wieland-Werke AGInventors: Ronald N. Caron, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Doris Humpenoder-Bogel, Hans-Achim Kuhn, Joerg Seeger
-
Patent number: 6749699Abstract: A copper alloy that consists essentially of, by weight, from 0.15% to 0.7% of chromium, from 0.005% to 0.3% of silver, from 0.01% to 0.15% of titanium, from 0.01% to 0.10% of silicon, up to 0.2% of iron, up to 0.5% of tin, and the balance copper and inevitable impurities has high strength, a yield strength in excess of 80 ksi, and high electrical conductivity, in excess of 80% IACS. The alloy further has substantially isotropic bend characteristics when the processing route includes a solution heat anneal above 850° C. and subsequent cold rolling into sheet, strip or foil interspersed by bell annealing. As a result, the alloy is particularly suited for forming into box-type electrical connectors for both automotive or multimedia applications. The alloy is also suitable for forming into a rod, wire or section.Type: GrantFiled: August 6, 2001Date of Patent: June 15, 2004Assignees: Olin Corporation, Wieland-Werke AGInventors: Andreas Bögel, Jörg Seeger, Hans-Achim Kuhn, John F. Breedis, Ronald N. Caron, Derek E. Tyler
-
Publication number: 20040079456Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver.Type: ApplicationFiled: June 30, 2003Publication date: April 29, 2004Applicants: Onlin Corporation, Wieland Werke A.G.Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger