Patents by Inventor Joerg Staeblein

Joerg Staeblein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7968074
    Abstract: The method produces low-stress, large-volume crystals with low birefringence and uniform index of refraction. The method includes growing the crystal with larger than desired dimensions including diameter and height from a melt; cooling and tempering the crystal with the larger than desired dimensions and after the cooling and tempering removing edge regions of the crystal with the larger than desired dimensions so that a diameter reduction and a height reduction of at least five percent occurs respectively and so that the crystal has the desired dimensions of diameter and height. No further tempering takes place after removing of the edge regions.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 28, 2011
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Patent number: 7837969
    Abstract: The method of making a single crystal, especially a CaF2 single crystal, includes tempering, in which the crystal is heated at <18 K/h to a temperature of 1000° C. to 1350° C. and held at this temperature for at least 65 hours with maximum temperature differences within the crystal of <0.2 K. Subsequently the crystal is cooled with a cooling rate of at maximum 0.5 K/h above a limiting temperature between 900° C. to 600° C. and then further below this limiting temperature at maximum 3 K/h. The obtained CaF2 crystals have refractive index uniformity <0.025×10?6 (RMS) in a (111)-, (100)- or (110)-direction and a stress birefringence of less than 2.5 nm/cm (PV) and/or a stress birefringence of less than 1 nm/cm (RMS) in the (100)- or (110)-direction. In the (111)-direction the stress birefringence is <0.5 nm/cm (PV) and/or the stress birefringence is <0.15 nm/cm (RMS).
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: November 23, 2010
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Joerg Staeblein, Lutz Parthier
  • Patent number: 7679806
    Abstract: The optical elements for ultraviolet radiation, especially for microlithography, are made from cubic granet, cubic spinel, cubic perovskite and/or cubic M(II)- as well as M(IV)-oxides. The optical elements are made from suitable crystals of Y3Al5O12, Lu3Al5O12, Ca3Al2Si3O12, K2NaAlF6, K2NaScF6, K2LiAlF6 and/or Na3Al2Li3F12, (Mg, Zn)Al2O4, CaAl2O4, CaB2O4 and/or LiAl5O8, BaZrO3 and/or CaCeO3. A front lens used in immersion optics for microlithography at wavelengths under 200 nm is an example of a preferred optical element of the present invention.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: March 16, 2010
    Assignee: Schott AG
    Inventors: Gunther Wehrhan, Regina Martin, Lutz Parthier, Joerg Staeblein, Martin Letz, Jochen Alkemper, Konrad Knapp, Klaus Petermann
  • Publication number: 20090180948
    Abstract: The method of making a single crystal, especially a CaF2 single crystal, includes tempering, in which the crystal is heated at <18 K/h to a temperature of 1000° C. to 1350° C. and held at this temperature for at least 65 hours with maximum temperature differences within the crystal of <0.2 K. Subsequently the crystal is cooled with a cooling rate of at maximum 0.5 K/h above a limiting temperature between 900° C. to 600° C. and then further below this limiting temperature at maximum 3 K/h. The obtained CaF2 crystals have refractive index uniformity <0.025×10?6 (RMS) in a (111)-, (100)- or (110)-direction and a stress birefringence of less than 2.5 nm/cm (PV) and/or a stress birefringence of less than 1 nm/cm (RMS) in the (100)- or (110)-direction. In the (111)-direction the stress birefringence is <0.5 nm/cm (PV) and/or the stress birefringence is <0.15 nm/cm (RMS).
    Type: Application
    Filed: March 25, 2009
    Publication date: July 16, 2009
    Inventors: Joerg Staeblein, Lutz Parthier
  • Patent number: 7303627
    Abstract: A method is described for making an especially not-(111)-oriented low-stress large-volume crystal having a glide plane with reduced stress birefringence and more uniform refractive index. The method includes growing and tempering the crystal while heating and/or cooling to form a temperature gradient in order to relax stresses arising along the glide plane. During the tempering the heating and/or cooling occurs by heat transfer in a heat transfer direction and the heat transfer direction or temperature gradient is oriented at an angle of from 5° to 90° to the glide plane. Crystals with a uniform refractive index with variations of less than 0.025×10?6 (RMS value) are produced by the method.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: December 4, 2007
    Assignee: Schott AG
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Publication number: 20070251443
    Abstract: A method is described for making an especially not-(111)-oriented low-stress large-volume crystal having a glide plane with reduced stress birefringence and more uniform refractive index. The method includes growing and tempering the crystal while heating and/or cooling to form a temperature gradient in order to relax stresses arising along the glide plane. During the tempering the heating and/or cooling occurs by heat transfer in a heat transfer direction and the heat transfer direction or temperature gradient is oriented at an angle of from 50° to 900° to the glide plane. Crystals with a uniform refractive index with variations of less than 0.025×10?6 (RMS value) are produced by the method.
    Type: Application
    Filed: June 18, 2007
    Publication date: November 1, 2007
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Publication number: 20060245043
    Abstract: The optical elements for ultraviolet radiation, especially for microlithography, are made from cubic granatite, cubic spinel, cubic perovskite and/or cubic M(II)- as well as M(IV)-oxides. The optical elements are made from suitable crystals of Y3Al5O12, Lu3Al5O12, Ca3Al2Si3O12, K2NaAlF6, K2NaScF6, K2LiAlF6 and/or Na3Al2Li3F12, (Mg, Zn)Al2O4, CaAl2O4, CaB2O4 and/or LiAl5O8, BaZrO3 and/or CaCeO3. A front lens used in immersion optics for microlithography at wavelengths under 200 nm is an example of a preferred optical element of the present invention.
    Type: Application
    Filed: March 7, 2006
    Publication date: November 2, 2006
    Inventors: Gunther Wehrhan, Regina Martin, Lutz Parthier, Joerg Staeblein, Martin Letz, Jochen Alkemper, Konrad Knapp, Klaus Petermann
  • Publication number: 20060201412
    Abstract: The method produces highly uniform, low-stress single crystals, especially of calcium fluoride. A single crystal drawn from a melt apparatus with a suitable process is cooled and subsequently subjected to a tempering step. The method is characterized by rapid cooling in a temperature range between less than or equal to 1300° C. and greater than or equal to 1050° C. with a cooling rate of greater than or equal to 10 K/h and preferably less than or equal to 60 K/h.
    Type: Application
    Filed: March 2, 2006
    Publication date: September 14, 2006
    Inventors: Christian Poetisch, Gunther Wehrhahn, Lutz Parthier, Hans-Joerg Axmann, Joerg Staeblein
  • Publication number: 20050204998
    Abstract: A method is described for making an especially not-(111)-oriented low-stress large-volume crystal having a glide plane with reduced stress birefringence and more uniform refractive index. The method includes growing and tempering the crystal while heating and/or cooling to form a temperature gradient in order to relax stresses arising along the glide plane. During the tempering the heating and/or cooling occurs by heat transfer in a heat transfer direction and the heat transfer direction or temperature gradient is oriented at an angle of from 5° to 90° to the glide plane. Crystals with a uniform refractive index with variations of less than 0.025×10?6 (RMS value) are produced by the method.
    Type: Application
    Filed: February 22, 2005
    Publication date: September 22, 2005
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Publication number: 20050204999
    Abstract: The method produces low-stress, large-volume crystals with low birefringence and uniform index of refraction. The method includes growing the crystal with larger than desired dimensions including diameter and height from a melt; cooling and tempering the crystal with the larger than desired dimensions and after the cooling and tempering removing edge regions of the crystal with the larger than desired dimensions so that a diameter reduction and a height reduction of at least five percent occurs respectively and so that the crystal has the desired dimensions of diameter and height. No further tempering takes place after removing of the edge regions.
    Type: Application
    Filed: February 22, 2005
    Publication date: September 22, 2005
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Publication number: 20050183659
    Abstract: The method for making single crystals, especially CaF2 crystals, includes tempering, in which the crystal is heated at <18 K/h to a temperature of 1000° C. to 1350° C. and held at this temperature for at least 65 hours with maximum temperature differences within the crystal of <0.2 K. Subsequently the crystal is cooled with a cooling rate of at maximum 0.5 K/h above a limiting temperature between 900° C. to 600° C. and then further below this limiting temperature at maximum 3 K/h. The obtained CaF2 crystals have refractive index uniformity <0.025×10?6 (RMS) in a (111)-, (100)- and/or (110)-direction and a stress birefringence of less than 2.5 nm/cm (PV) and/or a stress birefringence of less than 1 nm/cm (RMS) in the (100)- or (110)-direction. In the (111)-direction the stress birefringence is <0.5 nm/cm (PV) and/or the stress birefringence is <0.15 nm/cm (RMS).
    Type: Application
    Filed: February 22, 2005
    Publication date: August 25, 2005
    Inventors: Joerg Staeblein, Lutz Parthier
  • Patent number: 6364946
    Abstract: The method for making a uniform, large-size single crystal of calcium fluoride includes placing a single precursor crystal of calcium fluoride in a tempering vessel provided with a cover; introducing calcium fluoride powder into the tempering vessel and subsequently heating the single precursor crystal, preferably in intimate contact with the calcium fluoride powder, in the tempering vessel together with the calcium fluoride powder for two or more hours at temperatures above 1150° C. to temper the precursor crystal and thus form the uniform, large-scale single crystal of calcium fluoride. The uniform large-sized single crystals of calcium fluoride can be used to make improved lens, prism, light-conducting rod, optical window or other optical component for DUV photolithography, steppers, excimer lasers, wafers, computer chips and electronic devices containing the wafers and chips.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: April 2, 2002
    Assignee: Schott Glas
    Inventors: Joerg Staeblein, Andreas Weisleder, Gunther Wehrhan, Burkhard Speit, Lutz Parthier
  • Publication number: 20010025598
    Abstract: The method for making a uniform, large-size single crystal of calcium fluoride includes placing a single precursor crystal of calcium fluoride in a tempering vessel provided with a cover; introducing calcium fluoride powder into the tempering vessel and subsequently heating the single precursor crystal, preferably in intimate contact with the calcium fluoride powder, in the tempering vessel together with the calcium fluoride powder for two or more hours at temperatures above 1150° C. to temper the precursor crystal and thus form the uniform, large-scale single crystal of calcium fluoride. The uniform large-sized single crystals of calcium fluoride can be used to make improved lens, prism, light-conducting rod, optical window or other optical component for DUV photolithography, steppers, excimer lasers, wafers, computer chips and electronic devices containing the wafers and chips.
    Type: Application
    Filed: March 2, 2001
    Publication date: October 4, 2001
    Inventors: Joerg Staeblein, Andreas Weisleder, Gunther Wehrhan, Burkhard Speit, Lutz Parthier