Patents by Inventor Joerg Sundermeyer
Joerg Sundermeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12180234Abstract: The invention relates to the synthesis and provision of a new class of volatile metal organic compounds based on bis(alkylimine)glyoxal and bis(dialkylhydrazone)glyoxal ligands in combination with cyclopentadienide and alkyl ligands for use in ALD and CVD processes.Type: GrantFiled: July 26, 2019Date of Patent: December 31, 2024Assignee: UMICORE AG & CO. KGInventors: Nicholas Rau, Joerg Sundermeyer, Andreas Rivas Nass, Ralf Karch, Annika Frey, Angelino Doppiu, Eileen Woerner
-
Publication number: 20240317788Abstract: The invention relates to a method for producing complexes of precious metals, in particular platinum, which have at least one organo-dihydroazulenyl ligand. The invention also relates to complexes of precious metals, in particular platinum, which have at least one organo-dihydroazulenyl ligand and to the use of the aforementioned metal complexes as precatalysts or catalysts in a chemical reaction or as precursor compounds for producing a layer which contains a precious metal, in particular platinum, or a metal layer consisting of a precious metal, in particular platinum, in particular on at least one surface of a substrate. The invention additionally relates to a substrate, in particular a substrate which can be obtained according to such a method. The invention also relates to a crosslinkable silicon composition comprising at least one compound with aliphatic carbon-carbon multi-bonds, at least one compound with Si-bonded hydrogen atoms, and at least one platinum (IV) complex of the aforementioned type.Type: ApplicationFiled: February 4, 2022Publication date: September 26, 2024Applicant: UMICORE AG & CO. KGInventors: Tobias VOLLGRAFF, Joerg SUNDERMEYER, Angelino DOPPIU
-
Publication number: 20240317779Abstract: The invention relates to a method for preparing compounds of the general formula MAYn(AzuH) (I), where MA=alkali metal, Y=neutral ligand, n=0, 1, 2, 3, or 4. AzuH is azulene (bicyclo[5.3.0]decapentaene) or an azulene derivative that bears a hydride anion H? in the 4, 6 or 8 position in addition to an H atom. The invention additionally provides compounds obtainable by this method, and a method using such compounds for preparation of complexes of metals of groups 6 to 12. The invention further relates to complexes of middle and later transition metals (groups 6 to 12) which each have at least one H-dihydroazulenyl anion (AzuH)1?, and to the use of all the aforementioned transition metal complexes as precatalysts or catalysts or electron transfer reagents in a chemical reaction or as precursor compounds for production of a layer containing a metal M, or of a metal layer consisting of the metal M, especially on at least one surface of a substrate.Type: ApplicationFiled: February 4, 2022Publication date: September 26, 2024Applicant: UMICORE AG & CO. KGInventors: Tobias VOLLGRAFF, Joerg SUNDERMEYER, Angelino DOPPIU
-
Patent number: 12091427Abstract: Metal complexes of formula (I) are described: [M(L1)x(L2)y(hydra)z]n??formula (I) wherein: M=metal atom having an atomic number selected from the ranges a) through c): a) 12, 21 to 34, with the exception of 30, b) 39 to 52, with the exception of 48, c) 71 to 83, with the exception of 80, L1=neutral or anionic ligand, with x=0 or 1, L2=neutral or anionic ligand, with y=0 or 1, (hydra)=acetone dimethylhydrazone monoanion, with z=1, 2, or 3, n=1 or 2, and the total charge of the complex is 0.Type: GrantFiled: March 27, 2020Date of Patent: September 17, 2024Assignee: Umicore AG & CO. KGInventors: Joerg Sundermeyer, Henrik Schumann, Wolf Schorn, Nicholas Rau, Annika Frey, Ralf Karch, Eileen Woerner, Angelino Doppiu
-
Patent number: 11643425Abstract: The invention relates to compounds in accordance with the general formula [Ru(arene)(Ra—N?CR1—CR3?N—Rb)] or [Ru(arene)((Rc,Rd)N—N?CRH1—CRH3?N—N(Re,Rf))]. In this case, arene is selected from the group consisting of mononuclear and polynuclear arenes and heteroarenes. R1, R3, RH1, RH3 and Ra-Rf are independently selected from the group consisting of H, an alkyl radical (C1-C10) and an aryl radical. It further relates to methods for the production of these compounds, compounds obtainable according to these methods, their use and a substrate having on a surface thereof a ruthenium layer or a layer containing ruthenium. In addition, the invention relates to a method for producing compounds [Ru(arene)X2]2, wherein arene is selected from the group consisting of mononuclear and polynuclear arenes and X=halogen, compounds of this type obtainable according to this method, and their use.Type: GrantFiled: July 26, 2019Date of Patent: May 9, 2023Assignee: UMICORE AG & CO. KGInventors: Nicholas Rau, Jörg Sundermeyer, Henrik Schumann, Andreas Rivas Nass, Annika Frey, Wolf Schorn, Eileen Woerner, Ralf Karch, Angelino Doppiu
-
Patent number: 11407650Abstract: The invention relates to a method for producing a compound of formula MXn from a precursor compound of formula MXm, where M is a metal, X is a halide selected from F, Cl, Br, J, m is a number selected from the range 2 to 8, and n is a number selected from the range 1 to 7, with the condition that n<m, comprising a method step in which the precursor compound is reduced with a silane compound to the compound of formula MXn.Type: GrantFiled: January 24, 2018Date of Patent: August 9, 2022Assignee: Umicore AG & Co. KGInventors: Joerg Sundermeyer, Lisa Hamel, Ruben Ramon Mueller, Andreas Rivas-Nass, Angelino Doppiu, Eileen Woerner, Ralf Karch
-
Patent number: 11384102Abstract: The invention relates to lithium alkyl aluminates according to the general formula Li[AlR4] and to a method for preparing same, starting from LiAlH4 and RLi in an aprotic solvent. The invention also relates to compounds according to the general formula Li[AlR4] which can be obtained using the claimed method, and to the use thereof. The invention also relates to the use of a lithium alkyl aluminate Li[AlR4] as a transfer reagent for transferring at least one radical R to an element halide or metal halide and to a method for transferring at least one radical R to a compound E(X)q for preparing a compound according to the general formula E(X)q-pRp, where E=aluminium, gallium, indium, thallium, germanium, tin, lead, antimony, bismuth, zinc, cadmium, mercury, or phosphorus, X=halogen, q=2, 3 or 4, and p=1, 2, 3 or 4. The invention also relates to compounds which can be obtained using such a method, to the use thereof, and to a substrate which has an aluminium layer or a layer containing aluminium on one surface.Type: GrantFiled: November 28, 2019Date of Patent: July 12, 2022Assignee: Umicore AG & Co. KGInventors: Susanne Herritsch, Joerg Sundermeyer
-
Publication number: 20220153768Abstract: Metal complexes of formula (I) are described: [M(L1)x(L2)y(hydra)z]n??formula (I) wherein: M=metal atom having an atomic number selected from the ranges a) through c): a) 12, 21 to 34, with the exception of 30, b) 39 to 52, with the exception of 48, c) 71 to 83, with the exception of 80, L1=neutral or anionic ligand, with x=0 or 1, L2=neutral or anionic ligand, with y=0 or 1, (hydra)=acetone dimethylhydrazone monoanion, with z=1, 2, or 3, n=1 or 2, and the total charge of the complex is 0.Type: ApplicationFiled: March 27, 2020Publication date: May 19, 2022Inventors: Joerg SUNDERMEYER, Henrik SCHUMANN, Wolf SCHORN, Nicholas RAU, Annika FREY, Ralf KARCH, Eileen WOERNER, Angelino DOPPIU
-
Publication number: 20220098224Abstract: The invention relates to ruthenium complexes of formula (I): [(arene)RuXL] formula (I) wherein the ruthenium includes the following ligands: (arene) arene, which may be optionally substituted, X H or C1-C8 hydrocarbon group, and L R2N—CR1=NR3, wherein R1 is selected from H, C1-C8 hydrocarbon group, which may be optionally substituted, and —NR4R5, wherein R4 and R5 independently of one another are selected from H and C1-C8 hydrocarbon groups, which may be optionally substituted, R2 and R3 independently of one another are selected from C1-C8 hydrocarbon groups, which may be optionally substituted, wherein R2 and R3 are identical to or different from one another, and R1 may be linked directly to R2, R1 may be linked directly to R3 and/or R2 may be linked directly to R3.Type: ApplicationFiled: January 7, 2020Publication date: March 31, 2022Inventors: Joerg SUNDERMEYER, Henrik SCHUMANN
-
Publication number: 20220056061Abstract: The invention relates to a two-stage synthesis for the production of bis(tertbutylimido)bis(dialkylamido)tungsten compounds according to the general formula [W(NtBu)2(NRARB)2] (I), starting from [W(NtBu)2(NHtBu)2]. The invention also relates to compounds according to the general formula [W(NtBu)2(NRARB)2] (I), obtainable according to the claimed method, compounds according to general formula [W(NtBu)2(NRARB)2] (I), with the exception of [W(NtBu)2(NMe2)2] and [W(NtBu)2(NEtMe)2], the use of a compound [W(NtBu)2(NRARB)2] (I), and a substrate which, on a surface, has a tungsten layer or a tungsten-containing layer. Defined bis(tertbutylimido)bis(dialkylamido)tungsten compounds of the type [W(NtBu)2(NRARB)2] (I) can be produced easily, economically and reproducibly in high purity and good yields by means of the described method. On account of their high purity, the compounds are suitable for producing high-quality substrates which have tungsten layers or tungsten-containing layers.Type: ApplicationFiled: November 28, 2019Publication date: February 24, 2022Applicant: UMICORE AG & CO. KGInventors: Susanne HERRITSCH, Joerg SUNDERMEYER, Andreas RIVAS NASS, Oliver BRIEL, Ralf KARCH, Wolf SCHORN, Annika FREY, Angelino DOPPIU, Eileen WOERNER
-
Publication number: 20220041631Abstract: The invention relates to lithium alkyl aluminates according to the general formula Li[AlR4] and to a method for preparing same, starting from LiAlH4 and RLi in an aprotic solvent. The invention also relates to compounds according to the general formula Li[AlR4] which can be obtained using the claimed method, and to the use thereof. The invention also relates to the use of a lithium alkyl aluminate Li[AlR4] as a transfer reagent for transferring at least one radical R to an element halide or metal halide and to a method for transferring at least one radical R to a compound E(X)q for preparing a compound according to the general formula E(X)q-pRp, where E=aluminium, gallium, indium, thallium, germanium, tin, lead, antimony, bismuth, zinc, cadmium, mercury, or phosphorus, X=halogen, q=2, 3 or 4, and p=1, 2, 3 or 4. The invention also relates to compounds which can be obtained using such a method, to the use thereof, and to a substrate which has an aluminium layer or a layer containing aluminium on one surface.Type: ApplicationFiled: November 28, 2019Publication date: February 10, 2022Inventors: Susanne HERRITSCH, Joerg SUNDERMEYER
-
Publication number: 20210388006Abstract: The invention relates to a method for producing dialkylamido element compounds. In particular, the invention relates to a method for producing dialkylamido element compounds of the type E(NRR?)x, wherein first WAIN is reacted with HNRR? in order to form M[Al(NRR?)4] and hydrogen, and then the formed M[Al(NRR?)4] is reacted with EXx in order to form E(NRR?)x and M[AlX4], wherein M=Li, Na, or K, R=CnH2n+1, where n=1 to 20, and independently thereof R?=CnH2n+1, where n=1 to 20, E is an element of the groups 3 to 15 of the periodic table of elements, X=F, Cl, Br, or I, and x=2, 3, 4 or 5.Type: ApplicationFiled: September 5, 2019Publication date: December 16, 2021Applicant: UMICORE AG & CO, KGInventors: Susanne HERRITSCH, Joerg SUNDERMEYER, Angelino DOPPIU, Annika FREY, Ralf KARCH, Andreas RIVAS NASS, Wolf SCHORN, Eileen WOERNER
-
Publication number: 20210206790Abstract: The invention relates to compounds in accordance with the general formula [Ru(arene)(Ra—N?CR1—CR3?N—Rb)] or [Ru(arene)((Rc,Rd)N—N?CRH1—CRH3?N—N(Re,Rf))]. In this case, arene is selected from the group consisting of mononuclear and polynuclear arenes and heteroarenes. R1, R3, RH1, RH3 and Ra-Rf are independently selected from the group consisting of H, an alkyl radical (C1-C10) and an aryl radical. It further relates to methods for the production of these compounds, compounds obtainable according to these methods, their use and a substrate having on a surface thereof a ruthenium layer or a layer containing ruthenium. In addition, the invention relates to a method for producing compounds [Ru(arene)X2]2, wherein arene is selected from the group consisting of mononuclear and polynuclear arenes and X=halogen, compounds of this type obtainable according to this method, and their use.Type: ApplicationFiled: July 26, 2019Publication date: July 8, 2021Applicant: UMICORE AG & CO, KGInventors: Nicholas RAU, Jörg SUNDERMEYER, Henrik SCHUMANN, Andreas RIVAS NASS, Annika FREY, Wolf SCHORN, Eileen WOERNER, Ralf KARCH, Angelino DOPPIU
-
Publication number: 20210198299Abstract: The invention relates to the synthesis and provision of a new class of volatile metal organic compounds based on bis(alkylimine)glyoxal and bis(dialkylhydrazone)glyoxal ligands in combination with cyclopentadienide and alkyl ligands for use in ALD and CVD processes.Type: ApplicationFiled: July 26, 2019Publication date: July 1, 2021Applicant: UMICORE AG & CO. KGInventors: Nicholas RAU, Joerg SUNDERMEYER, Andreas RIVAS NASS, Ralf KARCH, Annika FREY, Angelino DOPPIU, Eileen WOERNER
-
Publication number: 20200392171Abstract: The invention relates to the use of a metal complex, which has at least one ligand of the formula R1—N3—R2, wherein R1 and R2 are hydrocarbon moieties, for depositing the metal or a compound of the metal from the gas phase. The invention further relates to methods for depositing metals from the metal complexes, and to metal complexes, substituted triazene compounds and to methods for the production thereof.Type: ApplicationFiled: December 12, 2018Publication date: December 17, 2020Inventors: Joerg SUNDERMEYER, Susanne PULZ, Fabian SCHROEDER
-
Patent number: 10745421Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapour deposition (MOCVD) or metal organic vapour phase epitaxy (MOVPE). The novel method according to the invention is characterised by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.Type: GrantFiled: February 27, 2019Date of Patent: August 18, 2020Assignee: UMICORE AG & CO. KGInventors: Joerg Sundermeyer, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
-
Publication number: 20200031684Abstract: The invention relates to a method for producing a compound of formula MXn from a precursor compound of formula MXm, where M is a metal, X is a halide selected from F, Cl, Br, J, m is a number selected from the range 2 to 8, and n is a number selected from the range 1 to 7, with the condition that n<m, comprising a method step in which the precursor compound is reduced with a silane compound to the compound of formula MXn.Type: ApplicationFiled: January 24, 2018Publication date: January 30, 2020Inventors: Joerg Sundermeyer, Lisa HAMEL, Ruben RAMON MUELLER, Andreas RIVAS-NASS, Angelino DOPPIU, Eileen WOERNER, Ralf KARCH
-
Patent number: 10428089Abstract: The invention relates to an improved process for inexpensive and environmentally benign preparation of trialkylgallium compounds of the general formula: R3Ga in high yield and selectivity, where R is alkyl of 1 to 4 carbon atoms. Trialkylgallium is prepared according to the invention via the intermediate stage alkylgallium dichloride (RGaCl2) or dialkylgallium chloride/alkylgallium dichloride mixture (R2GaCl/RGaCl2). The RGaCl2 obtained or the R2GaCl/RGaCl2 mixture also forms part of the subject-matter of the present invention. The novel process of the present invention is notable for improved process management. The process intentionally makes substantial use of inexpensive starting materials and reagents of low environmental impact and so is also useful for the industrial scale.Type: GrantFiled: March 12, 2015Date of Patent: October 1, 2019Assignee: Umicore AG & Co. KGInventors: Wolf Schorn, Jörg Sundermeyer, Annika Frey, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
-
Publication number: 20190194229Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapour deposition (MOCVD) or metal organic vapour phase epitaxy (MOVPE). The novel method according to the invention is characterised by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.Type: ApplicationFiled: February 27, 2019Publication date: June 27, 2019Applicant: UMICORE AG & CO. KGInventors: Joerg SUNDERMEYER, Annika FREY, Wolf SCHORN, Ralf KARCH, Andreas RIVAS-NASS, Eileen WOERNER, Angelino DOPPIU
-
Patent number: 10239892Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapor deposition (MOCVD) or metal organic vapor phase epitaxy (MOVPE). The novel method according to the invention is characterized by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.Type: GrantFiled: March 16, 2017Date of Patent: March 26, 2019Assignee: UMICORE AG & CO. KGInventors: Joerg Sundermeyer, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu