Patents by Inventor Joerg TILLACK

Joerg TILLACK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220106427
    Abstract: The invention relates to storage-stable pigmented formulations containing isocyanate groups, comprising at least one pigment a., at least one component b. containing isocyanate groups, at least one wetting agent and/or dispersant c., at least one isocyanate group-containing grinding resin d. and optionally solvents, wherein the formulation has a viscosity increase of less than 500% after storage at 50° C. over a period of at least 3 days.
    Type: Application
    Filed: February 24, 2020
    Publication date: April 7, 2022
    Inventors: Joerg Tillack, Dirk Achten, Achim Weber, Fabian Schuster
  • Patent number: 11247388
    Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are still free NCO groups in the material including the fusible polymer.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: February 15, 2022
    Assignee: Covestro Intellectual Property GmbH & Co. KG
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Ralf Rott, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
  • Patent number: 11213999
    Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are furthermore blocked NCO groups present in the material comprising the fusible polymer.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 4, 2022
    Assignee: Covestro Intellectual Property GmbH & Co. KG
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
  • Publication number: 20210252778
    Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are furthermore blocked NCO groups present in the material comprising the fusible polymer.
    Type: Application
    Filed: July 12, 2019
    Publication date: August 19, 2021
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
  • Publication number: 20210245424
    Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are still free NCO groups in the material including the fusible polymer.
    Type: Application
    Filed: July 12, 2019
    Publication date: August 12, 2021
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Ralf Rott, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
  • Publication number: 20210102090
    Abstract: The invention relates to processes for coating surfaces by alternatingly applying polyisocyanate compositions and suitable crosslinking catalysts, followed by catalytically crosslinking the polyisocyanate composition.
    Type: Application
    Filed: March 28, 2018
    Publication date: April 8, 2021
    Inventors: Jörg TILLACK, Dirk ACHTEN, Cornelia STECK, Roland WAGNER
  • Publication number: 20210031435
    Abstract: The invention relates to a method for applying a material containing a meltable polymer comprising the step of applying a filament of the at least partially molten material from a discharge opening of a discharge element onto a substrate. The meltable polymer has the following properties: —a melting point (DSC, differential scanning calorimetry; second heating with a heating rate of 5° C./min) in a range from ?40° C. to ?120° C.; —a glass transition temperature (DMA, dynamic mechanical analysis in accordance with DIN EN ISO 6721-1:2011) in a range from ??70° C. to ?30° C.; —a storage modulus G? (parallel plate oscillation viscometer in accordance with ISO 6721-10:2015 at a frequency of 1/s) at 20° C. above the melting point of ?1·104 Pa?—a storage modulus G? (parallel plate oscillation viscometer in accordance with ISO 6721-10:2015 at a frequency of 1/s) at 10° C. below the melting point with prior heating to a temperature of 20° C. above the melting point and subsequent cooling with a cooling rate of 1° C.
    Type: Application
    Filed: February 13, 2019
    Publication date: February 4, 2021
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Peter Reichert, Nicolas Degiorgio, Martin Melchiors, Wolfgang Arndt
  • Publication number: 20200407576
    Abstract: The invention relates to storage-stable pigmented formulations containing isocyanate groups, comprising at least one pigment a., at least one component b. containing isocyanate groups, at least one wetting agent and/or dispersant c., at least one grind resin d. and optionally solvents, wherein the formulation has a viscosity increase of less than 500% after storage at 50° C. over a period of at least 3 days. The invention also relates to the production of such formulations and to the use thereof.
    Type: Application
    Filed: March 14, 2019
    Publication date: December 31, 2020
    Inventors: Joerg Tillack, Dirk Achten, Monika Bach, Achim Weber, Fabian Schuster
  • Patent number: 10752724
    Abstract: The invention relates to a process for producing polyisocyanurate plastics having a functionalized surface, comprising the following steps: a) providing a polyisocyanate composition A) containing monomeric and/or oligomeric polyisocyanates; b) catalytically trimerizing the polyisocyanate composition A) so as to obtain a bulk polyisocyanurate material as intermediate; c) surface functionalizing the intermediate by contacting at least one surface of the intermediate with at least one functionalizing reagent D); d) continuing the catalytic trimerization. The invention further relates to a polyisocyanurate plastic having a functionalized surface obtainable from the process of the invention.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 25, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Hans-Josef Laas, Dieter Mager, Mathias Matner, Heiko Hocke, Jörg Tillack
  • Patent number: 10745591
    Abstract: The present invention relates to a method for adhesively bonding substrates, said method comprising the following steps: I) at least one adhesive component (a) and at least one isocyanate component (b) are applied between at least two substrates; II) the substrates are pressed together. The method is characterized in that in step I), the adhesive component and the isocyanate component are applied separately to the substrate. The invention further relates to a composite obtained according to said method. In a preferred embodiment, an aqueous polyurethane dispersion or a polyurethane solution in organic solvents is used as the adhesive component.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 18, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Jörg Tillack, Dirk Achten, Wolfgang Arndt, Roland Wagner, Martin Melchiors, Cornelia Steck
  • Publication number: 20200123344
    Abstract: The invention relates to materials made from cross-linked isocyanates which are coloured by pigments and/or pigment formulations.
    Type: Application
    Filed: June 22, 2018
    Publication date: April 23, 2020
    Inventors: Paul HEINZ, Heiko HOCKE, Dirk ACHTEN, Joerg TILLACK
  • Publication number: 20190367665
    Abstract: The present invention relates to polymerizable compositions which contain components that can be crosslinked both via isocyanurate bonds and by a radical reaction mechanism. The invention further relates to methods by way of which polymers can be produced from said compositions.
    Type: Application
    Filed: November 14, 2017
    Publication date: December 5, 2019
    Inventors: Paul HEINZ, Richard MEISENHEIMER, Jörg TILLACK, Dirk ACHTEN, Thomas BÜSGEN, Michael LUDEWIG, Christoph TOMCZYK, Roland WAGNER, Alisa KAYSER
  • Publication number: 20190367666
    Abstract: The present invention relates to polymerizable compositions which contain components that can be crosslinked both via isocyanurate bonds and by a radical reaction mechanism. The invention further relates to methods by way of which polymers can be produced from said compositions.
    Type: Application
    Filed: November 14, 2017
    Publication date: December 5, 2019
    Inventors: Jörg TILLACK, Dirk ACHTEN, Paul HEINZ, Richard MEISENHEIMER, Thomas BÜSGEN, Michael LUDEWIG, Christoph TOMCZYK, Roland WAGNER
  • Publication number: 20190337224
    Abstract: A process for producing an object from a precursor comprises the steps of: I) depositing a free-radically crosslinked resin atop a carrier to obtain a ply of a construction material joined to the carrier which corresponds to a first selected cross section of the precursor; II) depositing a free-radically crosslinked resin atop a previously applied ply of the construction material to obtain a further ply of the construction material which corresponds to a further selected cross section of the precursor and which is joined to the previously applied ply; III) repeating step II) until the precursor is formed; wherein the depositing of a free-radically crosslinked resin at least in step II) is effected by exposure and/or irradiation of a selected region of a free-radically crosslinkable resin corresponding to the respectively selected cross section of the object and wherein the free-radically crosslinkable resin has a viscosity (23° C., DIN EN ISO 2884-1) of ?5 mPas to ?100000 mPas.
    Type: Application
    Filed: November 14, 2017
    Publication date: November 7, 2019
    Inventors: Dirk Achten, Thomas BÜSGEN, Jörg TILLACK, Michael LUDEWIG, Christoph TOMCZYK, Roland WAGNER
  • Patent number: 10449714
    Abstract: A process for producing an object from a precursor comprises the steps of: depositing a free-radically crosslinked resin atop a carrier to obtain a ply of a construction material joined to the carrier which corresponds to a first selected cross section of the precursor; depositing a free-radically crosslinked resin atop a previously applied ply of the construction material to obtain a further ply of the construction material which corresponds to a further selected cross section of the precursor and which is joined to the previously applied ply; repeating step II) until the precursor is formed; wherein the depositing of a free-radically crosslinked resin at least in step II) is effected by exposure and/or irradiation of a selected region of a free-radically crosslinkable resin corresponding to the respectively selected cross section of the object and wherein the free-radically crosslinkable resin has a viscosity (23° C., DIN EN ISO 2884-1) of ?5 mPas to ?100000 mPas.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: October 22, 2019
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Thomas Büsgen, Jörg Tillack, Michael Ludewig, Christoph Tomczyk, Roland Wagner
  • Publication number: 20190275732
    Abstract: A method for producing an article in which a layer with a radically cross-linkable resin is selectively crosslinked at least partially. This takes place according to a selected cross section of the article to be formed by means of selective application of a radical initiator. The at least partially crosslinked material is added on layer by layer to a carrier or to previous layers bonded to the carrier. A system that is suitable for carrying out the method according to the invention has a substrate, a control unit, an application unit for applying the resin to the substrate, an application unit for applying an initiator to the resin, an energy exposure unit and a contacting unit.
    Type: Application
    Filed: December 4, 2017
    Publication date: September 12, 2019
    Inventors: Dirk ACHTEN, Thomas BÜSGEN, Michael LUDEWIG, Roland WAGNER, Christoph TOMCZYK, Jörg TILLACK, Arnaud GENOU
  • Publication number: 20180162981
    Abstract: The invention relates to a process for producing polyisocyanurate plastics having a functionalized surface, comprising the following steps: a) providing a polyisocyanate composition A) containing monomeric and/or oligomeric polyisocyanates; b) catalytically trimerizing the polyisocyanate composition A) so as to obtain a bulk polyisocyanurate material as intermediate; c) surface functionalizing the intermediate by contacting at least one surface of the intermediate with at least one functionalizing reagent D); d) continuing the catalytic trimerization. The invention further relates to a polyisocyanurate plastic having a functionalized surface obtainable from the process of the invention.
    Type: Application
    Filed: April 21, 2016
    Publication date: June 14, 2018
    Inventors: DIRK ACHTEN, Hans-Josef LAAS, Dieter MAGER, Mathias MATNER, Heilo HOCKE, Jörg TILLACK
  • Publication number: 20180133953
    Abstract: A process for producing an object from a precursor comprises the steps of: depositing a free-radically crosslinked resin atop a carrier to obtain a ply of a construction material joined to the carrier which corresponds to a first selected cross section of the precursor; depositing a free-radically crosslinked resin atop a previously applied ply of the construction material to obtain a further ply of the construction material which corresponds to a further selected cross section of the precursor and which is joined to the previously applied ply; repeating step II) until the precursor is formed; wherein the depositing of a free-radically crosslinked resin at least in step II) is effected by exposure and/or irradiation of a selected region of a free-radically crosslinkable resin corresponding to the respectively selected cross section of the object and wherein the free-radically crosslinkable resin has a viscosity (23° C., DIN EN ISO 2884-1) of ?5 mPas to ?100000 mPas.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Dirk Achten, Thomas Büsgen, Jörg Tillack, Michael Ludewig, Christoph Tomczyk, Roland Wagner
  • Publication number: 20180105722
    Abstract: The present invention relates to a method for adhesively bonding substrates, said method comprising the following steps: I) at least one adhesive component (a) and at least one isocyanate component (b) are applied between at least two substrates; II) the substrates are pressed together. The method is characterized in that in step I), the adhesive component and the isocyanate component are applied separately to the substrate. The invention further relates to a composite obtained according to said method. In a preferred embodiment, an aqueous polyurethane dispersion or a polyurethane solution in organic solvents is used as the adhesive component.
    Type: Application
    Filed: April 7, 2016
    Publication date: April 19, 2018
    Inventors: Jörg Tillack, Dirk Achten, Wolfgang Arndt, Roland Wagner, Martin Melchiors, Cornelia Steck
  • Patent number: 7790089
    Abstract: A process for in-mold coating and a mold is disclosed. The process entails (i) obtaining a mold having at least two cavities, (ii) molding a thermoplastic substrate in a first cavity, (iii) introducing the substrate into a second cavity, and (iv) coating said substrate with lacquer, the coating being carried out under enhanced pressure.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 7, 2010
    Assignee: Bayer MaterialScience AG
    Inventors: Olaf Zöllner, Thorsten Just, Jörg Tillack, Bernd Hausstätter, Michael Glawe, Klaus Konejung, Steffen Lang