Patents by Inventor Joerg Troger

Joerg Troger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8908729
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Patent number: 8199784
    Abstract: A laser light source comprises a semiconductor laser adapted for pulsed operation, a partially transmitting wavelength selective light reflector. The semiconductor laser comprises a front facet and a back facet. The front facet and the back facet define an internal laser cavity. The internal laser cavity comprises a laser active medium. The partially transmitting wavelength selective light reflector has a peak reflectivity within a gain bandwidth of said laser active medium. The wavelength selective light reflector and the back facet define an external laser cavity. A roundtrip time of light in the external laser cavity is about 20 nanoseconds or less. A full width half maximum bandwidth of the wavelength selective light reflector is adapted to accommodate at least 12 longitudinal modes of the internal laser cavity and at least 250 longitudinal modes of the external laser cavity.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 12, 2012
    Assignee: Oclaro Technology Limited
    Inventors: Stefan Mohrdiek, Joerg Troger, Nicolai Matuschek
  • Patent number: 8111727
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 7, 2012
    Assignee: Oclaro Technology Limited
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100220762
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Application
    Filed: June 28, 2006
    Publication date: September 2, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100189152
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Application
    Filed: June 28, 2006
    Publication date: July 29, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20090097511
    Abstract: A laser light source comprises a semiconductor laser adapted for pulsed operation, a partially transmitting wavelength selective light reflector. The semiconductor laser comprises a front facet and a back facet. The front facet and the back facet define an internal laser cavity. The internal laser cavity comprises a laser active medium. The partially transmitting wavelength selective light reflector has a peak reflectivity within a gain bandwidth of said laser active medium. The wavelength selective light reflector and the back facet define an external laser cavity. A roundtrip time of light in the external laser cavity is about 20 nanoseconds or less. A full width half maximum bandwidth of the wavelength selective light reflector is adapted to accommodate at least 12 longitudinal modes of the internal laser cavity and at least 250 longitudinal modes of the external laser cavity.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 16, 2009
    Inventors: Stefan MOHRDIEK, Joerg Troger, Nicolai Matuschek