Patents by Inventor Joergen Gutzon Larsen

Joergen Gutzon Larsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9979030
    Abstract: A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 22, 2018
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mikael Schuisky, Finn Petersen, Niels Christiansen, Joergen Gutzon Larsen, Soeren Linderoth, Lars Mikkelsen
  • Patent number: 9695518
    Abstract: Solid oxide electrolysis cell (SOEC) stack obtainable by a process comprising the use of a glass sealant with composition 50 to 70 wt % SiO2, 0 to 20 wt % Al2O3, 10 to 50 wt % CaO, 0 to 10 wt % MgO, 0 to 2 wt % (Na2o 1K2O), 0 to 10 wt % b2O3, and 0 to 5 wt % of functional elements selected from TiO2, ZrO2, ZrO2, F, P2O5, Mo03, FeO3, MnO 2, La—Sr—Mn—O perovskite (LSM) and combinations thereof. Preferably, the sealant is a sheet of E-glass fibers with a composition in wt % of 52-56 SiO2, 12-16AL2O3, 16-25 CaO, 0-6MgO, 0-2 Na2+K2O, 0-10 B2O3, 0-1.5 TiO2, O-1F.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: July 4, 2017
    Assignee: Haldor Topsoe A/S
    Inventors: Jens Ulrik Nielsen, Jørgen Gutzon Larsen
  • Publication number: 20150079498
    Abstract: A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
    Type: Application
    Filed: July 10, 2014
    Publication date: March 19, 2015
    Applicant: Sandvik Intellectual Property AB
    Inventors: Mikael Schuisky, Finn Petersen, Niels Christiansen, Joergen Gutzon Larsen, Soeren Linderoth, Lars Mikkelsen
  • Patent number: 8945782
    Abstract: The present invention provides a method of producing a multilayer barrier structure in a solid oxide cell stack, comprising the steps of: —providing a metal interconnect; —applying a first metal oxide layer on said metal interconnect; —applying a second metal oxide layer on top of said first metal oxide layer; —applying a third metal oxide layer on top of said second metal oxide layer; —forming a solid oxide cell stack comprising said metal interconnect having said metal oxide layers thereon; and —reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialization, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialization step, which is carried out under controlled conditions for atmosphere composition and current
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 3, 2015
    Assignees: Technical University of Denmark, Topsoe Fuel Cell A/S
    Inventors: Karsten Agersted Nielsen, Søren Linderoth, Peter Vang Hendriksen, Åsa Persson, Lars Mikkelsen, Niels Christiansen, Jørgen Gutzon Larsen
  • Patent number: 8846211
    Abstract: A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 30, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mikael Schuisky, Finn Petersen, Niels Christiansen, Joergen Gutzon Larsen, Soeren Linderoth, Lars Mikkelsen
  • Publication number: 20140030632
    Abstract: A process for the conditioning of and applying a ceramic or other layer onto the surface of a sheet of stainless steel comprises the steps of (a) optionally annealing the steel plate or sheet in a protective gas atmosphere at an elevated temperature, (b) controlled etching of the surface of the sheet to produce a roughened surface and (c) depositing a protective and electrically conductive layer onto the roughened metallic surface. The process leads to coated metallic sheets with desirable properties, primarily to be used as interconnects in solid oxide fuel cells and solid oxide electrolysis cells.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 30, 2014
    Applicant: Topsoe Fuel Cell
    Inventors: Jørgen Gutzon Larsen, Søren Cliver Klitholm, Niels Christiansen
  • Patent number: 8497047
    Abstract: A solid oxide fuel cell stack obtainable by a process comprising the use of a glass sealant with composition 50-70 wt % SiO2, 0-20 wt % Al2O3, 10-50 wt % CaO, 0-10 wt % MgO, 0-6 wt % (Na2O+K2O), 0-10 wt % B2O3, and 0-5 wt % of functional elements selected from TiO2, ZrO2, F, P2O5, MoO3, Fe2O3, MnO2, La. Sr—Mn—O perovskite (LSM) and combinations thereof.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 30, 2013
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Jørgen Gutzon Larsen, Christian Olsen, Marie Drejer Jensen
  • Publication number: 20120193223
    Abstract: Solid oxide electrolysis cell (SOEC) stack obtainable by a process comprising the use of a glass sealant with composition 50 to 70 wt % SiO2, 0 to 20 wt % Al2O3, 10 to 50 wt % CaO, 0 to 10 wt % MgO, 0 to 2 wt % (Na2o 1K2O), 0 to 10 wt % b2O3, and 0 to 5 wt % of functional elements selected from TiO2, ZrO2, ZrO2, F, P2O5, Mo03, FeO3, MnO 2, La—Sr—Mn—O perovskite (LSM) and combinations thereof. Preferably, the sealant is a sheet of E-glass fibres with a composition in wt % of 52-56 SiO2, 12-16AL2O3, 16-25 CaO, 0-6MgO, 0-2 Na2+K2O, 0-10 B2O3, 0-1.5 TiO2, O-1F.
    Type: Application
    Filed: October 5, 2010
    Publication date: August 2, 2012
    Applicant: Topsoe Fuel Cell
    Inventors: Jens Ulrik Nielsen, Jørgen Gutzon Larsen
  • Patent number: 8163436
    Abstract: Solid oxide fuel cell stack obtainable by a process comprising the use of a glass sealant with composition 50-70 wt % SiO2, 0-20 wt % Al2O3, 10-50 wt % CaO, 0-10 wt % MgO, 0-2 wt % (Na2O+K2O), 5-10 wt % B2O3, and 0-5 wt % of functional elements selected from TiO2, ZrO2, F, P2O5, MoO3, Fe2O3, MnO2, La—Sr—Mn—O perovskite (LSM) and combinations thereof.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 24, 2012
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Jørgen Gutzon Larsen, Christian Olsen, Marie Drejer Jensen
  • Publication number: 20100119886
    Abstract: The present invention provides a method of producing a multilayer barrier structure in a solid oxide cell stack, comprising the steps of: -providing a metal interconnect; -applying a first metal oxide layer on said metal interconnect; -applying a second metal oxide layer on top of said first metal oxide layer; -applying a third metal oxide layer on top of said second metal oxide layer; -forming a solid oxide cell stack comprising said metal interconnect having said metal oxide layers thereon; and -reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current
    Type: Application
    Filed: November 13, 2007
    Publication date: May 13, 2010
    Applicants: Technical University of Denmark, Topsoe Fuel Cell A/S
    Inventors: Karsten Agersted Nielsen, Søren Linderoth, Peter Vang Hendriksen, Asa Persson, Lars Mikkelsen, Niels Christiansen, Jørgen Gutzon Larsen
  • Publication number: 20090029187
    Abstract: A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
    Type: Application
    Filed: November 21, 2005
    Publication date: January 29, 2009
    Inventors: Mikael Schuisky, Finn Petersen, Niels Christiansen, Joergen Gutzon Larsen, Soeren Linderoth, Lars Mikkelsen
  • Patent number: 6828263
    Abstract: Glass composition for use as sealing material in fuel cells, comprising a glass matrix with main components consisting of SiO2, Al2O3, and one or more compounds from group I metal oxides and/or group II metal oxides, and a filler material evenly dispersed in the matrix, wherein the filler material consists of particles of one or more refractive compounds from the group: MgO—MgAl2O4, stabilized zirconia, rare earth oxides, (Mg,Ca)SiO3, Mg2SiO4, MgSiO3, CaSiO3, CaZrO3, ThO2, TiO2, MIIAlSi2O8, where MII=Ca, Sr or Ba.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: December 7, 2004
    Assignee: Haldor Topsoe A/S
    Inventors: Jørgen Gutzon Larsen, Peter Halvor Larsen, Carsten Bagger
  • Patent number: 6339194
    Abstract: A supported superconductor device which is useful as a superconducting current lead or as a high voltage current regulator. The device is formed of a tubular support, with a layer of ceramic, glassy or glass ceramic material adhered to the inner wall of the tubular support, the layer of material embedding a superconducting layer centrally arranged within the material of the first layer, the material of the first layer having a minimum expansion coefficient and being reinforced with pore filling material.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: January 15, 2002
    Assignee: Haldor Topsoe A/S
    Inventors: Jørgen Gutzon Larsen, Jens Christiansen