Patents by Inventor Joern Heining

Joern Heining has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11598943
    Abstract: A fluorescence microscope (10) includes a sample illumination beam path including a source (9) for illumination light, a first wave front modulator (24) for providing the focused illumination light (8) with a central intensity minimum, a beam splitter (26) and a second adjustable wave front modulator (34) arranged in a pupil plane (30) of an objective (20). A first detection beam path section including the second wave front modulator (34) and a telescope (11) and ending at the beam splitter (26) coincides with the sample illumination beam path. A separate second detection beam path section includes a detector (38) for luminescence light from a sample. The telescope (11) images a first pupil (31) formed in the pupil plane (30) in a smaller second pupil (32), and transfers a beam of the illumination light (8) collimated in the second pupil (32) into an expanded beam collimated in the first pupil (31).
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 7, 2023
    Assignee: ABBERIOR INSTRUMENTS GMBH
    Inventors: Joern Heine, Haugen Mittelstaedt, Matthias Reuss, Gerald Donnert
  • Patent number: 11131630
    Abstract: For setting a laser-scanning fluorescence microscope to a correct alignment in which an intensity maximum of excitation light and an intensity minimum of fluorescence inhibition light coincide in a focal area of an objective lens, a structure in a sample marked with a fluorescent dye is scanned with the intensity maximum of the excitation light to generate first and second pictures of the sample, the first picture corresponding to a higher and the second picture corresponding to a lower intensity of the fluorescence inhibition light. A spatial offset of a first image of the structure in the first picture with regard to a second image of the structure in the second picture is calculated; and the intensity maximum of the excitation light is shifted with regard to the intensity minimum of the fluorescence inhibition light in the direction of the offset calculated to set the microscope to the correct alignment.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 28, 2021
    Assignee: ABBERIOR INSTRUMENTS GMBH
    Inventors: Joern Heine, Matthias Reuss, Benjamin Harke, Lars Kastrup
  • Publication number: 20210165199
    Abstract: A fluorescence microscope (10) comprises a sample illumination beam path including a source (9) for illumination light, a first wave front modulator (24) for providing the focused illumination light (8) with a central intensity minimum, a beam splitter (26) and a second adjustable wave front modulator (34) arranged in a pupil plane (30) of an objective (20). A first detection beam path section including the second wave front modulator (34) and a telescope (11) and ending at the beam splitter (26) coincides with the sample illumination beam path. A separate second detection beam path section includes a detector (38) for luminescence light from a sample. The telescope (11) images a first pupil (31) formed in the pupil plane (30) in a smaller second pupil (32), and transfers a beam of the illumination light (8) collimated in the second pupil (32) into an expanded beam collimated in the first pupil (31).
    Type: Application
    Filed: November 30, 2020
    Publication date: June 3, 2021
    Inventors: Joern Heine, Haugen Mittelstaedt, Matthias Reuss, Gerald Donnert
  • Publication number: 20190195800
    Abstract: For setting a laser-scanning fluorescence microscope to a correct alignment in which an intensity maximum of excitation light and an intensity minimum of fluorescence inhibition light coincide in a focal area of an objective lens, a structure in a sample marked with a fluorescent dye is scanned with the intensity maximum of the excitation light to generate first and second pictures of the sample, the first picture corresponding to a higher and the second picture corresponding to a lower intensity of the fluorescence inhibition light. A spatial offset of a first image of the structure in the first picture with regard to a second image of the structure in the second picture is calculated; and the intensity maximum of the excitation light is shifted with regard to the intensity minimum of the fluorescence inhibition light in the direction of the offset calculated to set the microscope to the correct alignment.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 27, 2019
    Inventors: Joern Heine, Matthias Reuss, Benjamin Harke, Lars Kastrup
  • Patent number: 5796230
    Abstract: A method for triggering or controlling a final control element uses a pulse width modulated signal. A sequence of the pulse width modulated signal is fixed by a predetermined time raster. After a predetermined number of standard pulses, one standard pulse is emitted and one long pulse follows that is twice as long as one standard pulse. In this way, seizing of the final control element is reliably prevented.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: August 18, 1998
    Assignee: Siemens Aktiengesellschaft
    Inventor: Joern Heining
  • Patent number: 5592075
    Abstract: A circuit configuration for supplying electrical consumers, in particular sensors in a motor vehicle, with a constant voltage required for their operation, includes a reference voltage source. A transistor is connected as an emitter follower for making a buffered reference voltage available at an output as a supply voltage for an electrical consumer.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: January 7, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventor: Joern Heining