Patents by Inventor Joern Naujokat

Joern Naujokat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8826059
    Abstract: A apparatus is provided for buffering data between a memory controller and a DRAM. The apparatus includes a phase locked loop (PLL), a phase interpolator for aligning a phase of an output clock signal in response to a phase aligning control word, and a non-volatile storage location permanently storing the phase aligning control word. The phase aligning control word is determined through an initial training procedure of the device under predetermined training conditions of at least a supply voltage level and a temperature, and the predetermined training conditions are set so as to optimize the phase alignment of an edge of the output clock signal with respect to the buffered data signal.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Joern Naujokat
  • Patent number: 8619937
    Abstract: An integrated CMOS clock generator with a self-biased phase locked loop circuit comprises a phase-frequency detector with a reference signal input, a feedback signal input and an output. A first charge pump of the clock generator has an input connected to the output of the phase-frequency detector and an output that supplies a control voltage. A loop capacitor is connected to the output of the first charge pump. The clock generator further has a second charge pump with an input connected to the output of the phase-frequency detector and an output. In particular, the clock generator has two oscillator blocks.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: December 31, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Joern Naujokat
  • Publication number: 20100211728
    Abstract: A apparatus is provided for buffering data between a memory controller and a DRAM. The apparatus includes a phase locked loop (PLL), a phase interpolator for aligning a phase of an output clock signal in response to a phase aligning control word, and a non-volatile storage location permanently storing the phase aligning control word. The phase aligning control word is determined through an initial training procedure of the device under predetermined training conditions of at least a supply voltage level and a temperature, and the predetermined training conditions are set so as to optimize the phase alignment of an edge of the output clock signal with respect to the buffered data signal.
    Type: Application
    Filed: January 13, 2010
    Publication date: August 19, 2010
    Applicant: Texas Instruments Deutschland GmbH
    Inventor: Joern Naujokat
  • Patent number: 7653758
    Abstract: A digital registered data buffer is disclosed that has data paths each with a data input for receiving a digital data input signal (Dn), a clock input for receiving a clock input signal (CLK) and a data output providing a digital data output signal (Qn) for application to a data destination device such as memory devices. The buffer further has a clock output for providing an output clock signal (QCLK) to the data destination device and a phase-locked loop (PLL) with a clock input, a feedback input, a feedback output and a plurality of clock outputs. The buffer uses a pair of data registers, i.e. flip-flops (FF1, FF2) connected in series in each data path. The first data register in each data path is clocked by the clock input signal (CLK) and the second data register in each data path is clocked by one of the clock outputs (PDCLK) from the PLL.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 26, 2010
    Assignee: Texas Instruments Deutschalnd GmbH
    Inventor: Joern Naujokat
  • Patent number: 7626437
    Abstract: A circuit assembly for converting a differential input clock signal pair into a single-ended output clock signal comprises a NMOS differential amplifier (20) including two N-channel field-effect transistors (N1, N2) which converts the input clock signal pair (CLK, NCLK) applied to its differential inputs into a first single-ended signal, a PMOS differential amplifier (22) including two P-channel field-effect transistors (P3, P4) which converts the input clock signal pair applied to its differential inputs into a second single-ended signal, a bias circuit (N5, N6, N7, P5, P6) generating for each differential amplifier a bias voltage defining its working point at which said field-effect transistors (N1, N2; P3, P4) change state as a function of said input clock signal pair (CLK, NCLK), and a NAND circuit (32) for linking said first and said second single-ended signal and outputting the single-ended output clock signal (A-CLK) as the result thereof.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: December 1, 2009
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Joern Naujokat
  • Patent number: 7400130
    Abstract: An integrated circuit device comprises internally on-chip an oscillator with a signal output. The device has a reference clock input, a first counter with a count input, a control input and a counter output, a second counter with a count input, a control input and an overflow indication output, and a test control logic circuit. The count input of the first counter is connected to the signal output of the oscillator. The count input of the second counter is connected to the reference clock input. The overflow indication output of the second counter is connected to an input of the test control logic circuit. The test control circuit has an output connected to the control input of the first counter to apply a stop counting control signal to the first counter after it has received an overflow indication signal from the second counter. The first counter after it has received a stop counting control signal provides a count at the counter output which is indicative of the output frequency of the oscillator.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 15, 2008
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Joern Naujokat, Ralf Sonnhueter, Markus Dietl
  • Publication number: 20080098251
    Abstract: A digital registered data buffer is disclosed that has data paths each with a data input for receiving a digital data input signal (Dn), a clock input for receiving a clock input signal (CLK) and a data output providing a digital data output signal (Qn) for application to a data destination device such as memory devices. The buffer further has a clock output for providing an output clock signal (QCLK) to the data destination device and a phase-locked loop (PLL) with a clock input, a feedback input, a feedback output and a plurality of clock outputs. The buffer uses a pair of data registers, i.e. flip-flops (FF1, FF2) connected in series in each data path. The first data register in each data path is clocked by the clock input signal (CLK) and the second data register in each data path is clocked by one of the clock outputs (PDCLK) from the PLL.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 24, 2008
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventor: Joern Naujokat
  • Publication number: 20070052487
    Abstract: An integrated circuit device comprises internally on-chip an oscillator with a signal output. The device has a reference clock input, a first counter with a count input, a control input and a counter output, a second counter with a count input, a control input and an overflow indication output, and a test control logic circuit. The count input of the first counter is connected to the signal output of the oscillator. The count input of the second counter is connected to the reference clock input. The overflow indication output of the second counter is connected to an input of the test control logic circuit. The test control circuit has an output connected to the control input of the first counter to apply a stop counting control signal to the first counter after it has received an overflow indication signal from the second counter. The first counter after it has received a stop counting control signal provides a count at the counter output which is indicative of the output frequency of the oscillator.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 8, 2007
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND
    Inventors: Joern Naujokat, Ralf Sonnhueter, Markus Dietl
  • Publication number: 20060140325
    Abstract: An integrated CMOS clock generator with a self-biased phase locked loop circuit comprises a phase-frequency detector with a reference signal input, a feedback signal input and an output. A first charge pump of the clock generator has an input connected to the output of the phase-frequency detector and an output that supplies a control voltage. A loop capacitor is connected to the output of the first charge pump. The clock generator further has a second charge pump with an input connected to the output of the phase-frequency detector and an output. In particular, the clock generator has two oscillator blocks.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 29, 2006
    Inventor: Joern Naujokat
  • Publication number: 20030128065
    Abstract: A circuit assembly for converting a differential input clock signal pair into a single-ended output clock signal comprises a NMOS differential amplifier (20) including two N-channel field-effect transistors (N1, N2) which converts the input clock signal pair (CLK, NCLK) applied to its differential inputs into a first single-ended signal, a PMOS differential amplifier (22) including two P-channel field-effect transistors (P3, P4) which converts the input clock signal pair applied to its differential inputs into a second single-ended signal, a bias circuit (N5, N6, N7, P5, P6) generating for each differential amplifier a bias voltage defining its working point at which said field-effect transistors (N1, N2; P3, P4) change state as a function of said input clock signal pair (CLK, NCLK), and a NAND circuit (32) for linking said first and said second single-ended signal and outputting the single-ended output clock signal (A-CLK) as the result thereof.
    Type: Application
    Filed: December 11, 2002
    Publication date: July 10, 2003
    Inventor: Joern Naujokat