Patents by Inventor Joey Chen

Joey Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160279427
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9427591
    Abstract: A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: August 30, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joey Chen, Robert Ozawa, Joonho Hyun, Vasily Dronov
  • Patent number: 9358399
    Abstract: An external charger for a battery in an implantable medical device and charging techniques are disclosed. Simulation data is used to model the power dissipation of the charging circuitry in the implant at varying levels of implant power. A power dissipation limit constrains the charging circuitry from producing an inordinate amount of heat to the tissue surrounding the implant, and duty cycles of a charging field are determined so as not to exceed that limit. A maximum simulated average battery current determines the optimal (i.e., quickest) battery charging current, and at least an optimal value for a parameter indicative of that current is determined and stored in the external charger. During charging, the actual value for that parameter is determined, and the intensity and/or duty cycle of the charging field are adjusted to ensure that charging is as fast as possible, while still not exceeding the power dissipation limit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 7, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9358389
    Abstract: An exemplary system includes 1) a headpiece module configured to be affixed to a head of a patient and comprising a primary sound processor configured to generate stimulation parameters used to direct an auditory prosthesis implanted within the patient to apply electrical stimulation representative of one or more audio signals to the patient and 2) a sound processor module separate from the headpiece module and configured to be selectively and communicatively coupled to the headpiece module. The sound processor module includes a secondary sound processor configured to detect a communicative coupling of the sound processor module to the headpiece module and contribute to the generation of one or more of the stimulation parameters while the sound processor module is communicatively coupled to the headpiece module. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 7, 2016
    Assignee: Advanced Bionics AG
    Inventors: Lakshmi N. Mishra, Joey Chen
  • Publication number: 20160144188
    Abstract: A patient is detected to be in a first posture state. In response to the patient being detected to be in the first posture state, a first electrical stimulation therapy is applied to a body region of the patient by a pulse generator implanted in the patient. The patient is detected to be in a second posture state. In response to the patient being detected to be in the second posture state that is different from the first posture state, a second electrical stimulation therapy is applied to the body region of the patient by the pulse generator. The second electrical stimulation therapy is different from the first electrical stimulation therapy.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 26, 2016
    Inventors: Joey Chen, Kerry Bradley, Leslie Halberg
  • Patent number: 9339659
    Abstract: An external charger for a battery in an implantable medical device (implant), and technique for charging batteries in multiple implants using such improved external charger, is disclosed. During charging, values for a parameter measured in the implants are reported from the implants to the external charger. The external charger infers from the magnitudes of the parameters which of the implants has the highest (hot) and lowest (cold) coupling to the external charger. The intensity of the magnetic charging field is optimized for the cold implant to ensure that it is charged with a maximum (fastest) battery charging current. The duty cycle of the magnetic charging field is also optimized for the hot implant to ensure that it does not exceed a power dissipation limit. As a result, charging is optimized to be fast for all of the implants, while still safe from a tissue heating perspective.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Jordi Parramon, Robert Ozawa, Jess Shi, Joey Chen, Md. Mizanur Rahman
  • Patent number: 9333367
    Abstract: An external charger for an implantable medical device, comprises a housing, an alternating current (AC) coil and substrate contained within the housing, and one or more electronic components mounted to the substrate. The AC coil is configured for wirelessly transmitting magnetic charging energy to the implantable medical device. The AC coil is disposed in a first plane, with the magnetic charging energy having a field directed perpendicular to the first plane. At least a portion of the substrate has a surface extending along a second plane that is substantially perpendicular to the first plane.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Joey Chen
  • Publication number: 20160114173
    Abstract: Electrical energy is transcutaneously transmitted at a plurality of different frequencies to an implanted medical device. The magnitude of the transmitted electrical energy respectively measured at the plurality of frequencies. One of the frequencies is selected based on the measured magnitude of the electrical energy (e.g., the frequency at which the measured magnitude of the electrical energy is the greatest). A depth level at which the medical device is implanted within the patient is determined based on the selected frequency. For example, the depth level may be determined to be relatively shallow if the selected frequency is relatively high, and relatively deep if the selected frequency is relative low. A charge strength threshold at which a charge strength indicator generates a user-discernible signal can then be set based on the determined depth level.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Inventors: Daniel Aghassian, Lev Freidin, Joey Chen
  • Publication number: 20160072328
    Abstract: A system and method for using statistical analysis of information obtained during a rechargeable battery charging session, wherein the method is for optimizing one or more parameters that are used for controlling the charging of a rechargeable battery during the charging session.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Benjamin Cottrill, Les Halberg, MIchael Labbe, Joey Chen
  • Publication number: 20160059021
    Abstract: A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: Joey Chen, Robert Ozawa, Joonho Hyun, Vasily Dronov
  • Patent number: 9265957
    Abstract: An implantable medical device and external base station system are disclosed. The external base station can provide a passive electric field to power the implant, or to charge its battery. The base station may also power or charge using magnetic fields under certain circumstances. The Implantable medical device may comprise an implantable neurostimulator having a number of electrode leads extending from its body. One or more of the electrode leads can comprise the antenna for receiving the electric field from the base station, and resonance in that antenna can be rectified to provide the power for recharging the battery. Although the E-field provided by the base station does not provide as much power for recharging as does other traditional charging techniques, it can occur passively and over longer distances to allow the patent's implant to be recharged when in relative proximity to the base station.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 23, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joey Chen, Robert Ozawa, Joonho Hyun, Vasily Dronov
  • Patent number: 9248279
    Abstract: A method of providing stimulation therapy to a patient includes performing first and second calibration processes in first and second patient posture states, respectively. The first and second calibration processes respectively associates a sensation experienced by a patient, in the respective patient posture states, with first and second amounts of an evoked potential, respectively, and also with first and second values of a stimulation parameter to achieve the first and second amounts of evoked potential, respectively. Thereafter, a current patient posture state is detected. If the current patient posture state is detected as the first patient posture state, stimulation therapy is applied to the patient using the first value of the stimulation parameter as an initial value. If the current patient posture state is detected as the second patient posture state, stimulation therapy is applied to the patient using the second value of the stimulation parameter as the initial value.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 2, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Joey Chen, Kerry Bradley, Leslie Halberg
  • Patent number: 9227075
    Abstract: Electrical energy is transcutaneously transmitted at a plurality of different frequencies to an implanted medical device. The magnitude of the transmitted electrical energy respectively measured at the plurality of frequencies. One of the frequencies is selected based on the measured magnitude of the electrical energy (e.g., the frequency at which the measured magnitude of the electrical energy is the greatest). A depth level at which the medical device is implanted within the patient is determined based on the selected frequency. For example, the depth level may be determined to be relatively shallow if the selected frequency is relatively high, and relatively deep if the selected frequency is relative low. A charge strength threshold at which a charge strength indicator generates a user-discernible signal can then be set based on the determined depth level.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 5, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Lev Freidin, Joey Chen
  • Patent number: 9211416
    Abstract: A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: December 15, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joey Chen, Robert Ozawa, Joonho Hyun, Vasily Dronov
  • Patent number: 9209634
    Abstract: A system and method for using statistical analysis of information obtained during a rechargeable battery charging session, wherein the method is for optimizing one or more parameters that are used for controlling the charging of a rechargeable battery during the charging session.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 8, 2015
    Assignee: GREATBATCH LTD.
    Inventors: Benjamin Cottrill, Les Halberg, Michael Labbe, Joey Chen
  • Patent number: 9155898
    Abstract: A combination charging and telemetry circuit for use within an implantable device, such as a microstimulator, uses a single coil for both charging and telemetry. In accordance with one aspect of the invention, one or more capacitors are used to tune the single coil to different frequencies, wherein the coil is used for multiple purposes, e.g., for receiving power from an external source and also for the telemetry of information to and from an external source.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 13, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Jordi Parramon, Joey Chen
  • Patent number: 9142989
    Abstract: A system and method of controlling the charging of the battery of a medical device using a remote inductive charger, with the method utilizing both a relatively fast closed-loop charging control based on a proxy for a target power transmission value in conjunction, and a slower closed-loop control based on an actual measured transmission value to control a charging power level for charging the medical device.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 22, 2015
    Assignee: GREATBATCH LTD.
    Inventors: Roger Fell, Benjamin Cottrill, Les Halberg, Michael Labbe, Joey Chen
  • Publication number: 20150224328
    Abstract: A base station for passively recharging a battery in an implant without patient involvement is disclosed. The base station can be hand held or may comprise equipment configured to be placed at a fixed location, such as under a bed, on or next to a wall, etc. The base station can generate electric and magnetic fields (E-field and B-field) that couple with an antenna and a receiving coil within the implant to generate a charging current for charging the implant's battery. No handling or manipulation on part of the patient is necessary; the implant battery is passively charged whenever the patient is within range of either the magnetic or electric charging fields generated by base station. Charging using the B-field occurs when the IPG is at a relatively short distance from the base station, while charging using the E-field occurs at longer distances.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Joey Chen, Robert Ozawa, Joonho Hyun, Vasily Dronov
  • Publication number: 20150224323
    Abstract: To recharge an implanted medical device, an external device, typically in the form of an inductive charger, is placed over the implant to provide for transcutaneous energy transfer. The external charging device can be powered by a rechargeable battery. Since the battery is in close proximity to the charge coil, the large magnetic field produced by the charge coil induces eddy currents that flow on the battery's metallic case, often resulting in undesirable heating of the battery and reduced efficiency of the charger. This disclosure provides a means of shielding the battery from the magnetic field to reduce eddy current heating, thereby increasing efficiency. In one embodiment, the magnetic shield consists of one or more thin ferrite plates. The use of a ferrite shield allows the battery to be placed directly over the charge coil as opposed to outside the extent of the charge coil.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Joey Chen, Robert Ozawa, Daniel Aghassian
  • Publication number: 20150202449
    Abstract: An external charger for an implantable medical device, comprises a housing, an alternating current (AC) coil and substrate contained within the housing, and one or more electronic components mounted to the substrate. The AC coil is configured for wirelessly transmitting magnetic charging energy to the implantable medical device. The AC coil is disposed in a first plane, with the magnetic charging energy having a field directed perpendicular to the first plane. At least a portion of the substrate has a surface extending along a second plane that is substantially perpendicular to the first plane.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Inventor: Joey Chen