Patents by Inventor Joey Litalien

Joey Litalien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922558
    Abstract: In various examples, information may be received for a 3D model, such as 3D geometry information, lighting information, and material information. A machine learning model may be trained to disentangle the 3D geometry information, the lighting information, and/or material information from input data to provide the information, which may be used to project geometry of the 3D model onto an image plane to generate a mapping between pixels and portions of the 3D model. Rasterization may then use the mapping to determine which pixels are covered and in what manner, by the geometry. The mapping may also be used to compute radiance for points corresponding to the one or more 3D models using light transport simulation. Disclosed approaches may be used in various applications, such as image editing, 3D model editing, synthetic data generation, and/or data set augmentation.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: March 5, 2024
    Assignee: NVIDIA Corporation
    Inventors: Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Tse Tsian Christophe Louis Fuji Tsang, Sameh Khamis, Or Litany, Sanja Fidler
  • Patent number: 11875449
    Abstract: Systems and methods are described for rendering complex surfaces or geometry. In at least one embodiment, neural signed distance functions (SDFs) can be used that efficiently capture multiple levels of detail (LODs), and that can be used to reconstruct multi-dimensional geometry or surfaces with high image quality. An example architecture can represent complex shapes in a compressed format with high visual fidelity, and can generalize across different geometries from a single learned example. Extremely small multi-layer perceptrons (MLPs) can be used with an octree-based feature representation for the learned neural SDFs.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 16, 2024
    Assignee: Nvidia Corporation
    Inventors: Towaki Alan Takikawa, Joey Litalien, Kangxue Yin, Karsten Julian Kreis, Charles Loop, Morgan McGuire, Sanja Fidler
  • Publication number: 20230334806
    Abstract: Neural representations may be used for multi-view reconstruction of scenes. A plurality of color images representing a scene from a plurality of camera poses may be received. For each point of a plurality of points along a ray, a signed distance and a color value may be determined as a function of a feature volume, a first neural network, and a second neural network. A predicted output color may be determined as a function of the density. At least one of the first neural network, the second neural network, the feature volume, or the transformation parameter may be adjusted based on the predicted output color and a corresponding target color obtained based on one of the color images. A three-dimensional representation of the scene may be displayed based on at least one of the first neural network, the second neural network, the feature volume, or the transformation parameter.
    Type: Application
    Filed: March 17, 2023
    Publication date: October 19, 2023
    Applicant: Meta Platforms Technologies, LLC
    Inventors: Lei XIAO, Derek NOWROUZEZAHRAI, Joey LITALIEN, Feng LIU
  • Publication number: 20220383582
    Abstract: In various examples, information may be received for a 3D model, such as 3D geometry information, lighting information, and material information. A machine learning model may be trained to disentangle the 3D geometry information, the lighting information, and/or material information from input data to provide the information, which may be used to project geometry of the 3D model onto an image plane to generate a mapping between pixels and portions of the 3D model. Rasterization may then use the mapping to determine which pixels are covered and in what manner, by the geometry. The mapping may also be used to compute radiance for points corresponding to the one or more 3D models using light transport simulation. Disclosed approaches may be used in various applications, such as image editing, 3D model editing, synthetic data generation, and/or data set augmentation.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Inventors: Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Tse Tsian Christophe Louis Fuji Tsang, Sameh Khamis, Or Litany, Sanja Fidler
  • Publication number: 20220284659
    Abstract: Systems and methods are described for rendering complex surfaces or geometry. In at least one embodiment, neural signed distance functions (SDFs) can be used that efficiently capture multiple levels of detail (LODs), and that can be used to reconstruct multi-dimensional geometry or surfaces with high image quality. An example architecture can represent complex shapes in a compressed format with high visual fidelity, and can generalize across different geometries from a single learned example. Extremely small multi-layer perceptrons (MLPs) can be used with an octree-based feature representation for the learned neural SDFs.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 8, 2022
    Inventors: Towaki Alan Takikawa, Joey Litalien, Kangxue Yin, Karsten Julian Kreis, Charles Loop, Morgan McGuire, Sanja Fidler
  • Publication number: 20220172423
    Abstract: Systems and methods are described for rendering complex surfaces or geometry. In at least one embodiment, neural signed distance functions (SDFs) can be used that efficiently capture multiple levels of detail (LODs), and that can be used to reconstruct multi-dimensional geometry or surfaces with high image quality. An example architecture can represent complex shapes in a compressed format with high visual fidelity, and can generalize across different geometries from a single learned example. Extremely small multi-layer perceptrons (MLPs) can be used with an octree-based feature representation for the learned neural SDFs.
    Type: Application
    Filed: May 7, 2021
    Publication date: June 2, 2022
    Inventors: Towaki Alan Takikawa, Joey Litalien, Kangxue Yin, Karsten Julian Kreis, Charles Loop, Morgan McGuire, Sanja Fidler
  • Patent number: 11335056
    Abstract: Systems and methods are described for rendering complex surfaces or geometry. In at least one embodiment, neural signed distance functions (SDFs) can be used that efficiently capture multiple levels of detail (LODs), and that can be used to reconstruct multi-dimensional geometry or surfaces with high image quality. An example architecture can represent complex shapes in a compressed format with high visual fidelity, and can generalize across different geometries from a single learned example. Extremely small multi-layer perceptrons (MLPs) can be used with an octree-based feature representation for the learned neural SDFs.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: May 17, 2022
    Assignee: Nvidia Corporation
    Inventors: Towaki Alan Takikawa, Joey Litalien, Kangxue Yin, Karsten Julian Kreis, Charles Loop, Morgan McGuire, Sanja Fidler