Patents by Inventor Johan Engstrom

Johan Engstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12231284
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 18, 2025
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Anders Wallen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20240355199
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for automatically designating traffic scenarios as safety-relevant traffic conflicts between agents in a driving environment. One of the methods includes receiving data representing a traffic scenario involving two agents; computing a safety-relevant metric for a first plurality of time points of the traffic scenario; computing a surprise metric for a second plurality of time points of the traffic scenario; determining that the surprise metric satisfies a surprise threshold within a threshold time window of the safety-relevant metric satisfying a safety-relevant threshold; and in response, designating the traffic scenario as a safety-relevant traffic conflict.
    Type: Application
    Filed: April 22, 2024
    Publication date: October 24, 2024
    Inventors: Johan Engstrom, Francesca Margherita Favaro, Azadeh Dinparastdjadid, Shuyuan Liu, John Michael Scanlon, Trent William Victor
  • Publication number: 20240308551
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing a backward looking surprise metric for autonomously driven vehicles. One of the methods includes obtaining first data representing one or more previously predicted states of an agent along one or more predicted trajectories of the agent at a first time step. Second data representing one or more states of the agent at a subsequent time step is obtained. A surprise score is computed from a measure of a difference between the first data computed for the one or more predicted trajectories for the prior time step and the second data computed for the one or more predicted states for the subsequent time step.
    Type: Application
    Filed: May 23, 2024
    Publication date: September 19, 2024
    Inventors: Azadeh Dinparastdjadid, Johan Engstrom, Haoyu Chen, Isaac Supeene, Menghui Wang
  • Patent number: 12017686
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing a backward looking surprise metric for autonomously driven vehicles. One of the methods includes obtaining first data representing one or more previously predicted states of an agent along one or more predicted trajectories of the agent at a first time step. Second data representing one or more states of the agent at a subsequent time step is obtained. A surprise score is computed from a measure of a difference between the first data computed for the one or more predicted trajectories for the prior time step and the second data computed for the one or more predicted states for the subsequent time step.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: June 25, 2024
    Assignee: Waymo LLC
    Inventors: Azadeh Dinparastdjadid, Johan Engstrom, Haoyu Chen, Isaac Supeene, Menghui Wang
  • Publication number: 20240199084
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing enhanced surprise metrics for autonomously driven vehicles. One of the methods includes receiving data representing a predicted state of an agent at a particular time, data representing an actual state of the agent for the particular time, and computing a surprise metric for the actual state of the agent based on a measure of the residual information between the predicted state of the agent and the actual state of the agent.
    Type: Application
    Filed: December 19, 2023
    Publication date: June 20, 2024
    Inventors: Isaac John Supeene, Azadeh Dinparastdjadid, Johan Engstrom
  • Patent number: 11926332
    Abstract: Aspects of the disclosure provide for controlling an autonomous vehicle. For instance, a first probability distribution may be generated for the vehicle at a first future point in time using a generative model for predicting expected behaviors of objects and a set of characteristics for the vehicle at an initial time expected to be perceived by an observer. Planning system software of the vehicle may be used to generate a trajectory for the vehicle to follow. A second probability distribution may be generated for a second future point in time using the generative model based on the trajectory and a set of characteristics for the vehicle at the first future point expected to be perceived by the observer. A surprise assessment may be generated by comparing the first probability distribution to the second probability distribution. The vehicle may be controlled based on the surprise assessment.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: March 12, 2024
    Assignee: Waymo LLC
    Inventors: Johan Engstrom, Jared Russell
  • Publication number: 20240051582
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting agent response times. One of the methods includes continually updating, at each time step of a plurality of time steps, an accumulated measure of surprise for the agent due to the movements of another entity in the traffic environment. A distribution of previously predicted trajectories is obtained at a previous time step for the other entity in the environment. A measure of surprise is computed from the perspective of the agent. An accumulated measure of surprise is updated for the time step using the computed measure of surprise for the agent. If the accumulated measure of surprise crosses a threshold at a particular point in time, a predicted response time for the agent is generated based on the particular point in time that the accumulated measure of surprise crosses the threshold.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 15, 2024
    Inventors: Johan Engstrom, Shuyuan Liu, Azadeh Dinparastdjadid, Camelia Valentina Simoiu
  • Patent number: 11834070
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining the likelihood that a particular event would occur during a navigation interaction using simulations generated by sampling from agent data.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: December 5, 2023
    Assignee: Waymo LLC
    Inventors: Johan Engstrom, Emmanuel Christophe, Joseph Lee, Isaac Supeene, Razvan Mathias
  • Publication number: 20230202485
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Patent number: 11634145
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver. For example, a detected gaze direction or pattern may be compared to an expected gaze direction or pattern given the surrounding environment in a vicinity of the vehicle.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 25, 2023
    Assignee: Waymo LLC
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Publication number: 20230011497
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining the likelihood that a particular event would occur during a navigation interaction using simulations generated by sampling from agent data.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Inventors: Johan Engstrom, Emmanuel Christophe, Joseph Lee, Isaac Supeene, Razvan Mathias
  • Patent number: 11491994
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver. For example, a detected gaze direction or pattern may be compared to an expected gaze direction or pattern given the surrounding environment in a vicinity of the vehicle.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 8, 2022
    Assignee: Waymo LLC
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Patent number: 11447142
    Abstract: Aspects of the disclosure provide for controlling an autonomous vehicle. For instance, a first probability distribution may be generated for the vehicle at a first future point in time using a generative model for predicting expected behaviors of objects and a set of characteristics for the vehicle at an initial time expected to be perceived by an observer. Planning system software of the vehicle may be used to generate a trajectory for the vehicle to follow. A second probability distribution may be generated for a second future point in time using the generative model based on the trajectory and a set of characteristics for the vehicle at the first future point expected to be perceived by the observer. A surprise assessment may be generated by comparing the first probability distribution to the second probability distribution. The vehicle may be controlled based on the surprise assessment.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: September 20, 2022
    Assignee: Waymo LLC
    Inventors: Johan Engstrom, Jared Russell
  • Patent number: 11074556
    Abstract: A waste collection system includes waste containers for receiving waste, sensors associated with the waste containers, a server system for receiving signals from the sensors. The server system determines that a waste container needs to be collected, determines a location of the waste container and whether the waste container is in a waste collection vehicle accessible location. A notification is sent to an operator of the waste container if the waste container is not in a waste collection vehicle accessible location. When the waste container is moved to a waste collection vehicle accessible location, an optimal waste collection strategy for a waste collection vehicle to collect waste from the waste container at the waste collection vehicle accessible location is determined and the waste collection vehicle is routed to the location of the waste container.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 27, 2021
    Assignee: Enevo Oy
    Inventors: Fredrik Kekalainen, Johan Engstrom
  • Publication number: 20210001865
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Publication number: 20210001864
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver. For example, a detected gaze direction or pattern may be compared to an expected gaze direction or pattern given the surrounding environment in a vicinity of the vehicle.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav Cavelie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Patent number: 10807605
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver. For example, a detected gaze direction or pattern may be compared to an expected gaze direction or pattern given the surrounding environment in a vicinity of the vehicle.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 20, 2020
    Assignee: Waymo LLC
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Publication number: 20200198644
    Abstract: This technology relates to dynamically detecting, managing and mitigating driver fatigue in autonomous systems. For instance, interactions of a driver in a vehicle may be monitored to determine a distance or time when primary tasks associated with operation of the vehicle or secondary tasks issued by the vehicle computing were last performed. If primary tasks or secondary tasks are not performed within given distance thresholds or time limits, then one or more secondary tasks are initiated by the computing device of the vehicle. In another instance, potential driver fatigue, driver distraction or overreliance on an automated driving system is detected based on gaze direction or pattern of a driver. For example, a detected gaze direction or pattern may be compared to an expected gaze direction or pattern given the surrounding environment in a vicinity of the vehicle.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Keith Hutchings, Julien Mercay, Philip Nemec, Hans-olav CaveLie, Saswat Panigrahi, Renaud-Roland Hubert, Johan Engstrom
  • Publication number: 20190311333
    Abstract: A waste collection system includes waste containers for receiving waste, sensors associated with the waste containers, a server system for receiving signals from the sensors. The server system determines that a waste container needs to be collected, determines a location of the waste container and whether the waste container is in a waste collection vehicle accessible location. A notification is sent to an operator of the waste container if the waste container is not in a waste collection vehicle accessible location. When the waste container is moved to a waste collection vehicle accessible location, an optimal waste collection strategy for a waste collection vehicle to collect waste from the waste container at the waste collection vehicle accessible location is determined and the waste collection vehicle is routed to the location of the waste container.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Inventors: Fredrik KEKALAINEN, Johan ENGSTROM
  • Patent number: 10329713
    Abstract: The present invention relates to a method of producing steam at a digester plant of a chemical pulp mill. Black liquor is discharged from the digester at a first temperature and pressure. The black liquor is treated in a flash tank for generating flashed black liquor and flash steam at a second temperature and a second pressure, which are lower than the first temperature and pressure. The flashed black liquor is taken for further treatment to the evaporation plant. The flash steam is led to an indirect heat exchange contact with clean liquid in the reboiler for boiling the liquid and for generating steam. The steam is led from the reboiler into a fan or compressor for increasing the steam pressure to a third pressure, which is higher than the second pressure and for adjusting the pressure of the steam in the flash tank. Steam at a third pressure is used for pretreating comminuted cellulosic fiber material, such as chips, prior to cooking.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: June 25, 2019
    Assignee: ANDRITZ OY
    Inventors: Johan Engstrom, Paivi Ketonen, Peter Koistinen