Patents by Inventor Johan W. Weijtmans

Johan W. Weijtmans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598009
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 3, 2013
    Assignees: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Publication number: 20120208337
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8222673
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: July 17, 2012
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8120120
    Abstract: Semiconductor devices with embedded silicon germanium source/drain regions are formed with enhanced channel mobility, reduced contact resistance, and reduced silicide encroachment. Embodiments include embedded silicon germanium source/drain regions with a first portion having a relatively high germanium concentration, e.g., about 25 to about 35 at. %, an overlying second portion having a first layer with a relatively low germanium concentration, e.g., about 10 to about 20 at. %, and a second layer having a germanium concentration greater than that of the first layer. Embodiments include forming additional layers on the second layer, each odd numbered layer having relatively low germanium concentration, at. % germanium, and each even numbered layer having a relatively high germanium concentration. Embodiments include forming the first region at a thickness of about 400 ? to 28 about 800 ?, and the first and second layers at a thickness of about 30 ? to about 70 ?.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 21, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Frank (Bin) Yang, Johan W. Weijtmans, Scott Luning
  • Publication number: 20110298008
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 8, 2011
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 7989298
    Abstract: A semiconductor device and a method of making the device are provided. The method can include forming a gate conductor overlying a major surface of a monocrystalline semiconductor region and forming first spacers on exposed walls of the gate conductor. Using the gate conductor and the first spacers as a mask, at least extension regions are implanted in the semiconductor region and dummy spacers are formed extending outward from the first spacers. Using the dummy spacers as a mask, the semiconductor region is etched to form recesses having at least substantially straight walls extending downward from the major surface to a bottom surface, such that a substantial angle is defined between the bottom surface and the walls. Subsequently, the process is continued by epitaxially growing regions of stressed monocrystalline semiconductor material within the recesses.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: August 2, 2011
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc
    Inventors: Kevin K. Chan, Brian J. Greene, Judson R. Holt, Jeffrey B. Johnson, Thomas S. Kanarsky, Jophy S. Koshy, Kevin McStay, Dae-Gyu Park, Johan W. Weijtmans, Frank B. Yang
  • Publication number: 20110183486
    Abstract: A semiconductor device and a method of making the device are provided. The method can include forming a gate conductor overlying a major surface of a monocrystalline semiconductor region and forming first spacers on exposed walls of the gate conductor. Using the gate conductor and the first spacers as a mask, at least extension regions are implanted in the semiconductor region and dummy spacers are formed extending outward from the first spacers. Using the dummy spacers as a mask, the semiconductor region is etched to form recesses having at least substantially straight walls extending downward from the major surface to a bottom surface, such that a substantial angle is defined between the bottom surface and the walls. Subsequently, the process is continued by epitaxially growing regions of stressed monocrystalline semiconductor material within the recesses.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Kevin K. Chan, Brian J. Greene, Judson R. Holt, Jeffrey B. Johnson, Thomas S. Kanarsky, Jophy S. Koshy, Kevin McStay, Dae-Gyu Park, Johan W. Weijtmans, Frank B. Yang
  • Publication number: 20110062498
    Abstract: Semiconductor devices with embedded silicon germanium source/drain regions are formed with enhanced channel mobility, reduced contact resistance, and reduced silicide encroachment. Embodiments include embedded silicon germanium source/drain regions with a first portion having a relatively high germanium concentration, e.g., about 25 to about 35 at. %, an overlying second portion having a first layer with a relatively low germanium concentration, e.g., about 10 to about 20 at. %, and a second layer having a germanium concentration greater than that of the first layer. Embodiments include forming additional layers on the second layer, each odd numbered layer having relatively low germanium concentration, at. % germanium, and each even numbered layer having a relatively high germanium concentration. Embodiments include forming the first region at a thickness of about 400 ? to 28 about 800 ?, and the first and second layers at a thickness of about 30 ? to about 70 ?.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Inventors: Frank (Bin) Yang, Johan W. Weijtmans, Scott Luning