Patents by Inventor Johann Kim

Johann Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240272168
    Abstract: Provided herein are methods for detecting a target moiety in a biological sample suspected of containing the target moiety, by incubating the biological sample with an antibody and a fusion polypeptide, the fusion polypeptide comprising (i) an immunoglobulin-binding polypeptide and (ii) a reporting species.
    Type: Application
    Filed: February 14, 2023
    Publication date: August 15, 2024
    Inventors: Johann Kim, Zuo-Rong Shi, Xu Chen, Grace Kim
  • Patent number: 11761848
    Abstract: A method is disclosed for determining mechanical robustness of an overhead stowage bin for an aircraft includes repeatedly effecting an impact of a test body against an impact surface of the overhead stowage bin with a predefined impact force by a robotic arm of a manipulator, and investigating damage parameters of the overhead stowage bin.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 19, 2023
    Assignee: AIRBUS OPERATIONS GmbH
    Inventors: Johann Kim, Ludger Merz, Tobias Müller, Ulrich Meier-Noe, Maik Simon, Franz Krause
  • Publication number: 20200278271
    Abstract: A method is disclosed for determining mechanical robustness of an overhead stowage bin for an aircraft includes repeatedly effecting an impact of a test body against an impact surface of the overhead stowage bin with a predefined impact force by a robotic arm of a manipulator, and investigating damage parameters of the overhead stowage bin.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 3, 2020
    Inventors: Johann KIM, Ludger MERZ, Tobias MÜLLER, Ulrich MEIER-NOE, Maik SIMON, Franz KRAUSE
  • Patent number: 9853592
    Abstract: A method and a device for controlling an energy-generating system are operated with a renewable energy source. In the method, a prediction about an energy yield of the energy-generating system is made for a predefined prediction time period, and a predefined area, using a learning system with an input vector and an output vector. The output vector includes operating variables for a multiplicity of successive future times of the time period. The input vector includes variables, influencing the operating variables, for a point in time from a multiplicity of points in time of a predefined observation time period. The input variables include at least three items of information for the observation time period and the predefined area. The energy-generating system is controlled on the basis of the generated prediction such that weather-conditioned fluctuations in the energy yield of the energy-generating system are reduced.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: December 26, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Bischoff, Terrence Chen, Ralph Grothmann, Oliver Hennig, Johann Kim, Eberhard Ritzhaupt-Kleissl
  • Patent number: 9750956
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 5, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Patent number: 9370671
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 21, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150381103
    Abstract: A method and a device for controlling an energy-generating system are operated with a renewable energy source. In the method, a prediction about an energy yield of the energy-generating system is made for a predefined prediction time period, and a predefined area, using a learning system with an input vector and an output vector. The output vector includes operating variables for a multiplicity of successive future times of the time period. The input vector includes variables, influencing the operating variables, for a point in time from a multiplicity of points in time of a predefined observation time period. The input variables include at least three items of information for the observation time period and the predefined area. The energy-generating system is controlled on the basis of the generated prediction such that weather-conditioned fluctuations in the energy yield of the energy-generating system are reduced.
    Type: Application
    Filed: December 3, 2013
    Publication date: December 31, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Martin Bischoff, Terrence Chen, Ralph Grothmann, Oliver Hennig, Johann Kim, Eberhard Ritzhaupt-Kleissl
  • Publication number: 20150217135
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Application
    Filed: June 11, 2013
    Publication date: August 6, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150196781
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Application
    Filed: June 7, 2013
    Publication date: July 16, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann