Patents by Inventor Johann-Peter Melder

Johann-Peter Melder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120157679
    Abstract: Process for preparing a cyclic tertiary methylamine of the formula I where A is a C4-alkylene group, a C5-alkylene group or a —(CH2)2—B—(CH2)2—group, where B is oxygen (O) or an N—R1 radical and R1 is C1-C5-alkyl, aryl or C5-C7-cycloalkyl, wherein an amino alcohol II from the group consisting of 1,4-aminobutanol, 1,5-aminopentanol, aminodiglycol (ADG) or aminoethylethanolamine of the formula IIa where R1 is as defined above or is hydrogen (H), in which case R1?CH3 in the amine I, is reacted with methanol in a reactor at a temperature in the range from 150 to 270° C. in the liquid phase in the presence of a copper-comprising heterogeneous catalyst.
    Type: Application
    Filed: June 13, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: CHRISTOF WILHELM WIGBERS, Johann-Peter Melder, Bernd Stein, Harald Meißner
  • Publication number: 20120157715
    Abstract: A process for preparing an N,N-dialkylethanolamine of the formula I having high color stability where R1 and R2 are each independently a C1- to C8-alkyl group, by reacting ethylene oxide (EO) with a corresponding dialkylamine (R1R2NH) in the presence of water, wherein the reaction is effected continuously in a reactor, the reaction temperature is in the range from 90 to 180° C. and the residence time (RT) in the reactor is in the range from 1 to 7 min, the reactor output is treated thermally at a temperature in the range from 80 to 160° C. over a period in the range from 20 to 1000 min, and then the N,N-dialkylethanolamine is removed by distillation.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Frank-Friedrich Pape, Johann-Peter Melder, Alfred Krause, Roland Bou Chedid, Martin Rudloff
  • Publication number: 20120108816
    Abstract: Process for preparing 1,4-bishydroxyethylpiperazine (BHEPIP) of the formula I wherein diethanolamine (DEOA) of the formula II is reacted in the liquid phase in a reactor at a temperature in the range from 130 to 300° C. in the presence of a copper-comprising, chromium-free heterogeneous catalyst.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Nina Challand, Johann-Peter Melder, Udo Rheude, Roman Dostalek
  • Publication number: 20120101303
    Abstract: The invention relates to a process for preparing triethylenetetramine substituted by at least one methyl group (Me-TETA or methyl-substituted TETA compounds). Me-TETA is prepared by hydrogenating biscyanomethylimidazolidine (BCMI) in the presence of a catalyst. The present invention further relates to methyl-substituted TETA compounds as such. The present invention further relates to the use of methyl-substituted TETA compounds as a reactant or intermediate in the production of, for example, coatings or adhesives.
    Type: Application
    Filed: June 14, 2010
    Publication date: April 26, 2012
    Applicant: BASF SE
    Inventors: Randolf Hugo, Johann-Peter Melder, Robert Baumann, Alfred Oftring, Boris Buschhaus, Gordon Brasche, Sebastian Ahrens, Peter Pfab
  • Patent number: 8163139
    Abstract: Processes comprising: providing a mixture comprising monoethylene glycol and diethylenetriamine; and subjecting the mixture to extractive distillation with a diethylenetriamine-selective solvent comprising triethylene glycol to provide a first stream comprising monoethylene glycol and a second stream comprising diethylenetriamine; wherein the first stream is substantially free of diethylenetriamine, and wherein the second stream is substantially free of monoethylene glycol.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: April 24, 2012
    Assignee: BASF SE
    Inventors: Karin Pickenäcker, Johann-Peter Melder, Bram Willem Hoffer, Thomas Krug, Gunther van Cauwenberge, Frank-Friedrich Pape
  • Publication number: 20120095221
    Abstract: A process for preparing a cyclic tertiary amine of the formula I where A is a C4-alkylene group, a C5-alkylene group or a —(CH2)2—B—(CH2)2— group, where B is oxygen (O) or an N—R1 radical and R1 is C1-C5-alkyl, aryl or C5-C7-cycloalkyl, and the radical R2 is a linear or branched C2-C16-alkyl, C5-C7-cycloalkyl or C7-C20-aralkyl, in which (i) an amino alcohol II from the group consisting of 1,4-aminobutanol, 1,5-aminopentanol, aminodiglycol (ADG) and aminoethylethanolamine of the formula IIa where R1 is as defined above or hydrogen (H), in which case R1?R2 in the amine I, is reacted with a primary or secondary alcohol R2OH (III) at a temperature in the range from 150 to 270° C. in the liquid phase in the presence of a copper-comprising heterogeneous catalyst in a reactor.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Johann-Peter Melder, Bernd Stein, Harald Meißner
  • Patent number: 8153845
    Abstract: The invention relates to a process for preparing an amino nitrile mixture comprising aminoacetonitrile (AAN) and from 5 to 70% by weight of iminodiacetonitrile (IDAN), which comprises heating crude AAN which is largely free of formaldehyde cyanohydrin (FACH-free) at a temperature of from 50 to 150° C.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 10, 2012
    Assignee: BASF SE
    Inventors: Alfred Oftring, Kirsten Dahmen, Thilo Hahn, Randolf Hugo, Katrin Baumann, Johann-Peter Melder
  • Publication number: 20120071694
    Abstract: A process for preparing a diamine from a corresponding aminoalkyl nitrile, which is prepared by reaction of a corresponding monoamine with a corresponding alkenyl nitrile in a continuous mode of operation, comprising the steps: a) introduction of the corresponding monoamine into a continuously conveyed reaction stream; b) introduction of the corresponding alkenyl nitrile into the reaction stream, with this already comprising the aminoalkyl nitrile on addition; c) reaction of the reaction stream in a first reaction region; d) at least partial transfer of the reaction stream into at least one second reaction region for further reaction; e) discharge of the reaction stream from the second reaction region after the reaction; f) introduction of the reaction stream discharged in step (a) into a reduction region; and g) reduction of the aminoalkyl nitrile present in the reaction stream to the corresponding diamine.
    Type: Application
    Filed: October 17, 2011
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: JAN EBERHARDT, Thilo Hahn, Johann-Peter Melder, Gerhard Fritz, Volkmar Menger, Thomas Hill
  • Publication number: 20120070353
    Abstract: The present invention relates to a process for separating off at least one acidic gas from a gas mixture comprising at least one acidic gas, which comprises the step of contacting of the gas mixture with a porous metal-organic framework, where the framework adsorbs the at least one acidic gas and the framework comprises at least one at least bidentate organic compound coordinated to at least one metal ion, wherein the porous metal-organic framework is impregnated with an amine suitable for a gas scrub. The invention further provides such impregnated metal-organic frameworks.
    Type: Application
    Filed: March 18, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Natalia Trukhan, Ulrich Müller, Johann-Peter Melder, Steven Brughmans, Torsten Katz
  • Publication number: 20120071692
    Abstract: A process for preparing an aromatic amine by reacting a corresponding aromatic alcohol with an aminating agent selected from the group consisting of ammonia, primary amines and secondary amines, in the presence of hydrogen and a catalyst molding, at a temperature of from 60-300°. The catalyst molding comprises Zr, Pd and Pt and has an annular tablet form with an external diameter in the range from 2-6 mm, a height in the range from 1-4 mm and an internal diameter of from 1-5 mm or a topologically equivalent form with the same volume. Catalyst moldings comprising Zr, Pd and Pt are also provided. The catalyst molding has an annular tablet form with an external diameter in the range from 3-6 mm, a height in the range from 1-4 mm and an internal diameter of from 2-5 mm or a topologically equivalent form.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: SEBASTIAN AHRENS, Christoph Mueller, Axel Paul, Martin Ernst, Nadja Pollmer, Johann-Peter Melder, Thomas Heidemann, Joachim-Thierry Anders, Bram Willem Hoffer
  • Publication number: 20120035049
    Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 9, 2012
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20120029225
    Abstract: The present invention relates to a process for preparing 3-dimethylaminopropylamine (DMAPA) by reacting 3-dimethylaminopropionitrile (DMAPN) with hydrogen in the presence of a catalyst, wherein the DMAPN used has a content of 2-(dimethylaminomethyl)glutaronitrile (DGN) of 300 ppm by weight or less, based on the DMAPN used. Furthermore, the present invention relates to mixtures of DMAPN and DGN, wherein the weight ratio of DMAPN to DGN is in the range from 1 000 000:5 to 1 000 000:250.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Wolfgang Mägerlein, Jan Eberhardt, Johann-Peter Melder, Ulrich Köhler, Thilo Hahn, Mirko Kreitschmann, Dominik Herbrecht
  • Publication number: 20120004464
    Abstract: Process for preparing tri-n-propylamine (TPA), wherein di-n-propylamine (DPA) is reacted in the presence of hydrogen and a copper-comprising heterogeneous catalyst. An integrated process for preparing TPA, which comprises the following operations: I) reaction of n-propanol with ammonia in a reactor in the presence of an amination catalyst and optionally hydrogen to form a mixture of mono-n-propylamine, DPA and TPA, II) separation of unreacted ammonia, unreacted n-propanol and possibly hydrogen from the reaction product mixture and recirculation of at least the ammonia and propanol to the reactor in I) and also separation of the n-propylamine mixture by distillation and isolation of the TPA, III) reaction of the DPA obtained in the separation by distillation in II) in a reactor in the presence of hydrogen and a copper-comprising heterogeneous catalyst to form TPA and IV) feeding of the reactor output from III) to operation II).
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Applicant: BASF SE
    Inventors: Kevin Huyghe, Steven Brughmans, Falk Simon, Johann-Peter Melder, Peter Raatz
  • Publication number: 20110313188
    Abstract: The present invention relates to a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, wherein said catalyst comprises one or more elements selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to processes for preparing the inventive catalyst and to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Publication number: 20110313186
    Abstract: The present invention relates to catalysts and processes for preparation thereof, said catalysts being obtainable by contacting a monolithic catalyst support with a suspension which comprises one or more insoluble or sparingly soluble compounds of the elements selected from the group of the elements cobalt, nickel and copper. The invention further relates to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles, and to a process for hydrogenating organic compounds, which comprises using an inventive catalyst in the process.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Publication number: 20110313187
    Abstract: The present invention relates to a process for improving the catalytic properties of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to a process for hydrogenating compounds which comprise at least one unsaturated carbon-carbon, carbon-nitrogen or carbon-oxygen bond in the presence of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 22, 2011
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Patent number: 8075673
    Abstract: A description is given of an absorption medium for removing carbon dioxide from gas streams which comprises aqueous solution of an amine of the formula I HNR2??(I) where one or both radicals R are and the other radical R is hydrogen. The absorption medium is distinguished by particular oxidation resistance.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: December 13, 2011
    Assignee: BASF SE
    Inventors: Joachim-Thierry Anders, Johann-Peter Melder, Norbert Asprion, Ole Brettschneider, Iven Clausen, Bernd Eck, Ute Lichtfers
  • Publication number: 20110294977
    Abstract: The invention relates to a process for the preparation of polyalkylenepolyamines by catalyzed alcohol amination, in which (i) aliphatic aminoalcohols are reacted with one another or (ii) aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a catalyst.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris BUSCHHAUS, Johann-Peter MELDER, Rocco PACIELLO, Stephan HUEFFER, Helmut WITTELER
  • Publication number: 20110288337
    Abstract: A process for preparing 2-(2-tert-butylaminoethoxy)ethanol (tert-butylaminodiglycol, TBADG) by reacting diethylene glycol (DG) with tert-butylamine (TBA) in the presence of hydrogen and of a copper catalyst, by effecting the reaction at a temperature in the range from 160 to 220° C. in the presence of a copper- and aluminum oxide-containing catalyst, where the catalytically active material of the catalyst, before the reduction thereof with hydrogen, comprises 20 to 75% by weight of aluminum oxide (Al2O3), 20 to 75% by weight of oxygen compounds of copper, calculated as CuO, and ?5% by weight of oxygen compounds of nickel, calculated as NiO.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 24, 2011
    Applicant: BASF SE
    Inventors: Roland Bou Chedid, Johann-Peter Melder, Steven Brughmans, Torsten Katz
  • Publication number: 20110288338
    Abstract: The present invention relates to a process for preparing N,N-substituted 3-aminopropan-1-ols by a) reacting secondary amine with acrolein at a temperature of (?50) to 100° C. and a pressure of 0.01 to 300 bar, and b) reacting the reaction mixture obtained in stage a) with hydrogen and ammonia in the presence of a hydrogenation catalyst at a pressure of 1 to 400 bar, wherein the molar ratio of secondary amine to acrolein in stage a) is 1:1 or more and the temperature in stage b) is in the range from (?50) to 70° C. In a preferred embodiment, acrolein which has been obtained from glycerol based on renewable raw materials is used.
    Type: Application
    Filed: November 2, 2009
    Publication date: November 24, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Johann-Peter Melder, Martin Ernst