Patents by Inventor Johanna Forsman

Johanna Forsman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9278861
    Abstract: The invention relates to a method for the carbon coating of metallic nanoparticles. The metallic nanoparticles, which are produced using the metal-salt hydrogen-reduction method, can be coated with carbon by adding a hydrocarbon (for example, ethylene, ethane, or acetylene) to the hydrogen using in the synthesis. The carbon layer protects the metallic particles from oxidation, which greatly facilitates the handling and further processing of the particles. By altering the concentration of the hydrocarbon, it is possible, in addition, to influence the size of the metallic particles created, because the coating takes place simultaneously with the creation of the particles, thus stopping the growth process. A carbon coating at most two graphene layers thick behaves like a semiconductor. As a thicker layer, the coating is a conductor. If the hydrocarbon concentration is further increased, a metal-CNT composite material is formed in the process.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 8, 2016
    Inventors: Ari Auvinen, Jorma Jokiniemi, Johanna Forsman, Pipsa Mattila, Unto Tapper
  • Publication number: 20130009089
    Abstract: The invention relates to a method for the carbon coating of metallic nanoparticles. The metallic nanoparticles, which are produced using the metal-salt hydrogen-reduction method, can be coated with carbon by adding a hydrocarbon (for example, ethylene, ethane, or acetylene) to the hydrogen using in the synthesis. The carbon layer protects the metallic particles from oxidation, which greatly facilitates the handling and further processing of the particles. By altering the concentration of the hydrocarbon, it is possible, in addition, to influence the size of the metallic particles created, because the coating takes place simultaneously with the creation of the particles, thus stopping the growth process. A carbon coating at most two graphene layers thick behaves like a semiconductor. As a thicker layer, the coating is a conductor. If the hydrocarbon concentration is further increased, a metal-CNT composite material is formed in the process.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 10, 2013
    Applicant: TEKNOLOGIAN TUTKIMUSKESKUS VTT
    Inventors: Ari Auvinen, Jorma Jokiniemi, Johanna Forsman, Pipsa Mattila, Unto Tapper
  • Publication number: 20120272789
    Abstract: By means of the invention, nanoparticles, which can be pure metal, alloys of two or more metals, a mixture of agglomerates, or particles possessing a shell structure, are manufactured in a gas phase. Due to the low temperature of the gas exiting from the apparatus, metallic nanoparticles can also be mixed with temperature-sensitive materials, such as polymers. The method is economical and is suitable for industrial-scale production. A first embodiment of the invention is the manufacture of metallic nanoparticles for ink used in printed electronics.
    Type: Application
    Filed: November 10, 2010
    Publication date: November 1, 2012
    Applicant: TEKNOLOGIAN TUTKIMUSKESKUS VTT
    Inventors: Ari Auvinen, Jorma Jokiniemi, Unto Tapper, Johanna Forsman, Johannes Roine