Patents by Inventor Johannes De Haard

Johannes De Haard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240033353
    Abstract: The present invention provides combinations and methods using same for the treatment of malignancy, particularly a myeloid malignancy such as acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myeloid leukemia (CML), and chronic myelomonocytic leukemia (CMML). The combination may comprise an antibody or antigen-binding fragment thereof that binds to CD70, and an inhibitor of BCL-2. In certain embodiments, the antibody is ARGX-110 (cusatuzumab). In certain embodiments, the BCL-2 inhibitor is venetoclax. In certain embodiments, the combination provides synergistic treatment of AML. The combination may additionally comprise at least one additional anti-cancer agent.
    Type: Application
    Filed: June 14, 2023
    Publication date: February 1, 2024
    Inventors: Johannes DE HAARD, Samson FUNG, Nicolas LEUPIN, Adrian OCHSENBEIN, Carsten RIETHER, Luc VAN ROMPAEY
  • Patent number: 11712468
    Abstract: The present invention provides combinations and methods using same for the treatment of malignancy, particularly a myeloid malignancy such as acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myeloid leukemia (CML), and chronic myelomonocytic leukemia (CMML). The combination may comprise an antibody or antigen-binding fragment thereof that binds to CD70, and an inhibitor of BCL-2. In certain embodiments, the antibody is ARGX-110 (cusatuzumab). In certain embodiments, the BCL-2 inhibitor is venetoclax. In certain embodiments, the combination provides synergistic treatment of AML. The combination may additionally comprise at least one additional anti-cancer agent.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 1, 2023
    Assignees: ARGENX BV, University of Bern
    Inventors: Johannes De Haard, Samson Fung, Nicolas Leupin, Adrian Ochsenbein, Carsten Riether, Luc Van Rompaey
  • Patent number: 11505585
    Abstract: Provided are novel FcRn antagonist compositions comprising a variant Fc region that binds specifically to FcRn with increased affinity and reduced pH dependence relative to the native Fc region. Also provided are FcRn antagonists with enhanced CD16 binding affinity. Also provided are methods of treating antibody-mediated disorders (e.g. autoimmune diseases) using the these FcRn antagonist compositions, nucleic acids encoding the FcRn antagonist compositions, recombinant expression vectors and host cells for making the FcRn antagonist compositions, and pharmaceutical compositions comprising the FcRn antagonist compositions.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: November 22, 2022
    Assignees: argenx BV, The Board of Regents of the University of Texas System
    Inventors: Peter Ulrichts, Christophe Blanchetot, Torsten Dreier, Johannes de Haard, E. Sally Ward Ober, Nicolas G. H. Ongenae
  • Publication number: 20220275035
    Abstract: Provided are novel FcRn antagonist compositions comprising a variant Fc region that binds specifically to FcRn with increased affinity and reduced pH dependence relative to the native Fc region. Also provided are FcRn antagonists with enhanced CD16 binding affinity. Also provided are methods of treating antibody-mediated disorders (e.g. autoimmune diseases) using the these FcRn antagonist compositions, nucleic acids encoding the FcRn antagonist compositions, recombinant expression vectors and host cells for making the FcRn antagonist compositions, and pharmaceutical compositions comprising the FcRn antagonist compositions.
    Type: Application
    Filed: February 15, 2022
    Publication date: September 1, 2022
    Inventors: Peter Ulrichts, Christophe Blanchetot, Torsten Dreier, Johannes de Haard, E. Sally Ward Ober, Nicolas G. H. Ongenae
  • Publication number: 20220177555
    Abstract: Methods for preparing engineered antibodies exhibiting improved pH-dependent antigen binding are disclosed. The methods are based on introduction of histidine residues at a subset of defined amino acid positions within the antibody CDRs. The set of amino acid positions selected for histidine substitution is derived from a heat-map of histidine occurrence within the CDRs of functional antibodies from a natural antibody repertoire. The methods provide a simpler and less time-consuming approach to the identification of pH-dependent antibody variants.
    Type: Application
    Filed: May 10, 2018
    Publication date: June 9, 2022
    Inventors: Christophe BLANCHETOT, Erik HOFMAN, Johannes DE HAARD, Jacobus Cornelis RASSER
  • Publication number: 20220073604
    Abstract: The present invention provides binding molecules (e.g., antibodies or antigen binding fragments thereof) that specifically bind to and inhibit the biological activity of IL-6 (e.g., human, mouse and non-human primate IL-6). In a preferred embodiment, the antibodies or antigen binding fragments of the invention bind to IL-6 and inhibit its binding to an IL-6 receptor. Such antibodies or antigen binding fragments are particularly useful for treating IL-6-associated diseases or disorders (e.g., inflammatory disease and cancer).
    Type: Application
    Filed: August 10, 2021
    Publication date: March 10, 2022
    Inventors: Christophe BLANCHETOT, Johannes DE HAARD, Torsten DREIER, Natalie DE JONGE, Sebastian Paul VAN DER WONING, Nicolas ONGENAE
  • Patent number: 11117959
    Abstract: The present invention provides binding molecules (e.g., antibodies or antigen binding fragments thereof) that specifically bind to and inhibit the biological activity of IL-6 (e.g., human, mouse and non-human primate IL-6). In a preferred embodiment, the antibodies or antigen binding fragments of the invention bind to IL-6 and inhibit its binding to an IL-6 receptor. Such antibodies or antigen binding fragments are particularly useful for treating IL-6-associated diseases or disorders (e.g., inflammatory disease and cancer).
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 14, 2021
    Inventors: Christophe Blanchetot, Johannes De Haard, Torsten Dreier, Natalie De Jonge, Sebastian Paul Van Der Woning, Nicolas Ongenae
  • Publication number: 20200222532
    Abstract: The present invention provides combinations and methods using same for the treatment of malignancy, particularly a myeloid malignancy such as acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myeloid leukemia (CML), and chronic myelomonocytic leukemia (CMML). The combination may comprise an antibody or antigen-binding fragment thereof that binds to CD70, and an inhibitor of BCL-2. In certain embodiments, the antibody is ARGX-110 (cusatuzumab). In certain embodiments, the BCL-2 inhibitor is venetoclax. In certain embodiments, the combination provides synergistic treatment of AML. The combination may additionally comprise at least one additional anti-cancer agent.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 16, 2020
    Inventors: Johannes DE HAARD, Samson FUNG, Nicolas LEUPIN, Adrian OCHSENBEIN, Carsten RIETHER, Luc VAN ROMPAEY
  • Patent number: 10676535
    Abstract: The present invention relates to antibodies that specifically bind to the human c-Met receptor protein and that act as strict antagonists of hepatocyte growth factor (HGF)-mediated activation of the c-Met receptor and also inhibit HGF-independent activation of the human c-Met protein.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: June 9, 2020
    Assignee: argenx BVBA
    Inventors: Anna Hultberg, Michael Saunders, Johannes De Haard, Els Festjens, Natalie De Jonge, Paolo Michieli, Cristina Basilico, Torsten Dreier
  • Publication number: 20190233509
    Abstract: The present invention provides binding molecules (e.g., antibodies or antigen binding fragments thereof) that specifically bind to and inhibit the biological activity of IL-6 (e.g., human, mouse and non-human primate IL-6). In a preferred embodiment, the antibodies or antigen binding fragments of the invention bind to IL-6 and inhibit its binding to an IL-6 receptor. Such antibodies or antigen binding fragments are particularly useful for treating IL-6-associated diseases or disorders (e.g., inflammatory disease and cancer).
    Type: Application
    Filed: January 3, 2019
    Publication date: August 1, 2019
    Inventors: Christophe BLANCHETOT, Johannes DE HAARD, Torsten DREIER, Natalie DE JONGE, Sebastian Paul VAN DER WONING, Nicolas ONGENAE
  • Publication number: 20190194277
    Abstract: Provided are novel methods of treating generalized myasthenia gravis in a subject. These methods generally comprise administering to the subject an effective amount of an isolated FcRn antagonist. In certain embodiments the FcRn antagonist binds to FcRn with increased affinity and reduced pH dependence relative to native Fc region.
    Type: Application
    Filed: December 7, 2018
    Publication date: June 27, 2019
    Inventors: Johannes de Haard, Torsten Dreier, Peter Ulrichts, Antonio Guglietta, Nicolas Leupin
  • Patent number: 10316073
    Abstract: Provided are novel FcRn antagonist compositions comprising a variant Fc region that binds specifically to FcRn with increased affinity and reduced pH dependence relative to the native Fc region. Also provided are FcRn antagonists with enhanced CD16 binding affinity. Also provided are methods of treating antibody-mediated disorders (e.g. autoimmune diseases) using the these FcRn antagonist compositions, nucleic acids encoding the FcRn antagonist compositions, recombinant expression vectors and host cells for making the FcRn antagonist compositions, and pharmaceutical compositions comprising the FcRn antagonist compositions.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: June 11, 2019
    Assignees: argenx BVBA, The Board of Regents of the University of Texas System
    Inventors: Peter Ulrichts, Christophe Blanchetot, Torsten Dreier, Johannes de Haard, E. Sally Ward Ober, Nicolas G. H. Ongenae
  • Patent number: 10183995
    Abstract: The present invention provides binding molecules (e.g., antibodies or antigen binding fragments thereof) that specifically bind to and inhibit the biological activity of IL-6 (e.g., human, mouse and non-human primate IL-6). In a preferred embodiment, the antibodies or antigen binding fragments of the invention bind to IL-6 and inhibit its binding to an IL-6 receptor. Such antibodies or antigen binding fragments are particularly useful for treating IL-6-associated diseases or disorders (e.g., inflammatory disease and cancer).
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: January 22, 2019
    Assignee: ARGEN-X N.V.
    Inventors: Christophe Blanchetot, Johannes De Haard, Torsten Dreier, Natalie De Jonge, Sebastian Paul Van Der Woning, Nicolas Ongenae
  • Publication number: 20180215833
    Abstract: The present invention relates to antibodies that specifically bind to the human c-Met receptor protein and that act as strict antagonists of hepatocyte growth factor (HGF)-mediated activation of the c-Met receptor and also inhibit HGF-independent activation of the human c-Met protein.
    Type: Application
    Filed: December 26, 2017
    Publication date: August 2, 2018
    Inventors: Anna HULTBERG, Michael SAUNDERS, Johannes DE HAARD, Els FESTJENS, Natalie DE JONGE, Paolo MICHIELI, Cristina Basilico, Torsten DREIER
  • Publication number: 20180179258
    Abstract: Provided are novel FcRn antagonist compositions comprising a variant Fc region that binds specifically to FcRn with increased affinity and reduced pH dependence relative to the native Fc region. Also provided are FcRn antagonists with enhanced CD16 binding affinity. Also provided are methods of treating antibody-mediated disorders (e.g. autoimmune diseases) using the these FcRn antagonist compositions, nucleic acids encoding the FcRn antagonist compositions, recombinant expression vectors and host cells for making the FcRn antagonist compositions, and pharmaceutical compositions comprising the FcRn antagonist compositions.
    Type: Application
    Filed: November 22, 2017
    Publication date: June 28, 2018
    Inventors: Peter Ulrichts, Christophe Blanchetot, Torsten Dreier, Johannes de Haard, E. Sally Ward Ober, Nicolas G. H. Ongenae
  • Patent number: 9884917
    Abstract: The present invention relates to antibodies that specifically bind to the human c-Met receptor protein and that act as strict antagonists of hepatocyte growth factor (HGF)-mediated activation of the c-Met receptor and also inhibit HGF-independent activation of the human c-Met protein.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: February 6, 2018
    Assignee: ARGEN-X N.V.
    Inventors: Anna Hultberg, Michael Saunders, Johannes De Haard, Els Festjens, Natalie De Jonge, Paolo Michieli, Cristina Basilico, Torsten Dreier
  • Publication number: 20170349667
    Abstract: The invention provides a product combination or composition, and also multispecific antibodies comprising two or more antigen-binding sites (as antibodies or antigen binding fragments thereof), wherein two the antigen-binding bind to distinct non-overlapping epitopes of the human c-Met protein. The product combination or composition or multispecific antibody inhibits HGF-independent activation of the human c-Met receptor protein.
    Type: Application
    Filed: May 16, 2017
    Publication date: December 7, 2017
    Inventors: Anna HULTBERG, Michael SAUNDERS, Johannes DE HAARD, Els FESTJENS, Natalie DE JONGE, Paulo MICHIELI
  • Patent number: 9688773
    Abstract: The invention provides a product combination or composition, and also multispecific antibodies comprising two or more antigen-binding sites (as antibodies or antigen binding fragments thereof), wherein two the antigen-binding bind to distinct non-overlapping epitopes of the human c-Met protein. The product combination or composition or multispecific antibody inhibits HGF-independent activation of the human c-Met receptor protein.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: June 27, 2017
    Assignee: ARGEN-X N.V.
    Inventors: Anna Hultberg, Michael Saunders, Johannes De Haard, Els Festjens, Natalie De Jonge, Paolo Michieli, Cristina Basilico, Torsten Dreier
  • Patent number: 9688774
    Abstract: The present invention relates to antibodies that specifically bind to the human c-Met receptor protein and that act as strict antagonists of hepatocyte growth factor (HGF)-mediated activation of the c-Met receptor and also inhibit HGF-independent activation of the human c-Met protein.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: June 27, 2017
    Assignee: ARGEN-X N.V.
    Inventors: Anna Hultberg, Michael Saunders, Johannes De Haard, Els Festjens, Natalie De Jonge
  • Patent number: 9631027
    Abstract: The present invention relates to antibodies that specifically bind to the human c-Met receptor protein and that act as strict antagonists of hepatocyte growth factor (HGF)-mediated activation of the c-Met receptor and also inhibit HGF-independent activation of the human c-Met protein.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: April 25, 2017
    Assignee: ARGEN-X N.V.
    Inventors: Anna Hultberg, Michael Saunders, Johannes De Haard, Els Festjens, Natalie De Jonge