Patents by Inventor Johannes Heitmann

Johannes Heitmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8344438
    Abstract: The present invention refers to an electrode comprising a first metallic layer and a compound comprising at least one of a nitride, oxide, and oxynitride of a second metallic material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 1, 2013
    Assignee: Qimonda AG
    Inventors: Uwe Schroeder, Stefan Jakschik, Johannes Heitmann, Tim Boescke, Annette Saenger
  • Patent number: 7776759
    Abstract: A method for forming an integrated circuit having openings in a mold layer and for producing capacitors is disclosed. In one embodiment, nanotubes or nanowires are grown vertically on a horizontal substrate surface. The nanotubes or nanowires serve as a template for forming openings in a mold layer. The substrate is covered with a mold material after the formation of the nanowires or nanotubes. One embodiment provides mold layers having openings with a much higher aspect ratio.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Qimonda AG
    Inventors: Peter Lahnor, Odo Wunnicke, Johannes Heitmann, Peter Moll, Andreas Orth
  • Patent number: 7709359
    Abstract: A method of fabricating an integrated circuit with a dielectric layer on a substrate is disclosed. One embodiment provides forming the dielectric layer in an amorphous state on the substrate, the dielectric layer having a crystallization temperature; a doping the dielectric layer; a forming of a covering layer on the dielectric layer at a temperature being equal to or below the crystallization temperature; and a heating of the dielectric layer to a temperature being equal to or greater than the crystallization temperature.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: May 4, 2010
    Assignee: Qimonda AG
    Inventors: Tim Boescke, Johannes Heitmann, Uwe Schroder
  • Patent number: 7666752
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 23, 2010
    Assignee: Qimonda AG
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Publication number: 20090194410
    Abstract: The present invention refers to an electrode comprising a first metallic layer and a compound comprising at least one of a nitride, oxide, and oxynitride of a second metallic material.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Uwe Schroeder, Stefan Jakschik, Johannes Heitmann, Tim Boescke, Annette Saender
  • Publication number: 20090149027
    Abstract: Embodiments of the invention relate to a method of fabricating an integrated circuit, including etching of a layer that includes a high k material in the form of a metal oxide composition, wherein an etchant is used that includes a silicon halogen composition.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Inventors: Daniel Koehler, Johannes Heitmann, Michael Obert
  • Publication number: 20090057737
    Abstract: A method of fabricating an integrated circuit with a dielectric layer on a substrate is disclosed. One embodiment provides forming the dielectric layer in an amorphous state on the substrate, the dielectric layer having a crystallization temperature; a doping the dielectric layer; a forming of a covering layer on the dielectric layer at a temperature being equal to or below the crystallization temperature; and a heating of the dielectric layer to a temperature being equal to or greater than the crystallization temperature.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 5, 2009
    Applicant: QIMONDA AG
    Inventors: Tim Boescke, Johannes Heitmann, Uwe Schroder
  • Patent number: 7449739
    Abstract: A capacitor for a dynamic semiconductor memory cell, a memory and method of making a memory is disclosed. In one embodiment, a storage electrode of the capacitor has a pad-shaped lower section and a cup-shaped upper section, which is placed on top of the lower section. A lower section of a backside electrode encloses the pad-shaped section of the storage electrode. An upper section of the backside electrode is enclosed by the cup-shaped upper section of the storage electrode. A first capacitor dielectric separates the lower sections of the backside and the storage electrodes. A second capacitor dielectric separates the upper sections of the backside and the storage electrodes. The electrode area of the capacitor is enlarged while the requirements for the deposition of the capacitor dielectric are relaxed. Aspect ratios for deposition and etching processes are reduced.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: November 11, 2008
    Assignee: Infineon Technologies AG
    Inventors: Johannes Heitmann, Peter Moll, Odo Wunnicke, Till Schloesser
  • Publication number: 20080182427
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal oxide. In an initial step, a substrate is provided. In a further step, a first precursor comprising a transition metal containing compound, and a second precursor predominantly comprising at least one of water vapor, ozone, oxygen, or oxygen plasma are sequentially applied for depositing above the substrate a layer of a transition metal containing material. In another step, a third precursor comprising a dopant containing compound, and a fourth precursor predominantly comprising at least one of water vapor, ozone, oxygen, or oxygen plasma are sequentially applied for depositing above the substrate a layer of a dopant containing material. The transition metal comprises at least one of zirconium and hafnium. The dopant comprises at least one of barium, strontium, calcium, niobium, bismuth, magnesium, and cerium.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Inventors: Lars Oberbeck, Uwe Schroeder, Johannes Heitmann, Stephan Kudelka, Tim Boescke, Jonas Sundqvist
  • Publication number: 20080173919
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Application
    Filed: January 19, 2007
    Publication date: July 24, 2008
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Publication number: 20070286945
    Abstract: A method for forming an integrated circuit having openings in a mold layer and for producing capacitors is disclosed. In one embodiment, nanotubes or nanowires are grown vertically on a horizontal substrate surface. The nanotubes or nanowires serve as a template for forming openings in a mold layer. The substrate is covered with a mold material after the formation of the nanowires or nanotubes. One embodiment provides mold layers having openings with a much higher aspect ratio.
    Type: Application
    Filed: March 16, 2007
    Publication date: December 13, 2007
    Applicant: QIMONDA AG
    Inventors: Peter Lahnor, Odo Wunnicke, Johannes Heitmann, Peter Moll, Andreas Orth
  • Publication number: 20070170487
    Abstract: A capacitor for a dynamic semiconductor memory cell, a memory and method of making a memory is disclosed. In one embodiment, a storage electrode of the capacitor has a pad-shaped lower section and a cup-shaped upper section, which is placed on top of the lower section. A lower section of a backside electrode encloses the pad-shaped section of the storage electrode. An upper section of the backside electrode is enclosed by the cup-shaped upper section of the storage electrode. A first capacitor dielectric separates the lower sections of the backside and the storage electrodes. A second capacitor dielectric separates the upper sections of the backside and the storage electrodes. The electrode area of the capacitor is enlarged while the requirements for the deposition of the capacitor dielectric are relaxed. Aspect ratios for deposition and etching processes are reduced.
    Type: Application
    Filed: January 25, 2006
    Publication date: July 26, 2007
    Inventors: Johannes Heitmann, Peter Moll, Odo Wunnicke, Till Schloesser