Patents by Inventor JOHANNES J. BUITING

JOHANNES J. BUITING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10353107
    Abstract: A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 16, 2019
    Assignees: SCHLUMBERGER TECHNOLOGY CORPORATION, SAUDI ARABIAN OIL COMPANY
    Inventors: David F. Allen, George Bordakov, Steve F. Crary, Philip Savundararaj, Ramsin Eyvazzadeh, Edward Alan Clerke, Johannes J. Buiting, Paul Smith, Jim Funk
  • Publication number: 20140285190
    Abstract: A petrophysically regularized time domain nuclear magnetic resonance (NMR) inversion includes using an NMR tool to acquire NMR data and inverting the acquired NMR data in a time domain using petrophysical constraints. The inverted NMR data is analyzed. The petrophysical constraints may be identified by: determining a number of porobodons to seek, defining a plurality of zones in which only a subset of porobodon sets is present, and stacking all NMR echoes in each zone satisfying discriminators. The number of porobodons to seek may be based on knowledge of core samples, logs, and NMR sensitivity. The discriminator logs may be logs sensitive to porosity partitioning. A computing system having a processor, a memory, and a program stored in memory may be configured to perform the method. The system may be conveyed downhole on a wireline, a while-drilling drill string, a coiled tubing, a slickline, or a wired drill pipe.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 25, 2014
    Inventors: David F. Allen, George Bordakov, Steve F. Crary, Philip Savundararaj, Ramsin Eyvazzadeh, Edward Alan Clerke, Johannes J. Buiting, Paul Smith, Jim Funk
  • Publication number: 20120277996
    Abstract: The subject disclosure relates to methods for determining representative element areas and volumes in porous media. Representative element area (REA) is the smallest area that can be modeled to yield consistent results, within acceptable limits of variance of the modeled property. Porosity and permeability are examples of such properties. In 3D, the appropriate term is representative element volume (REV). REV is the smallest volume of a porous media that is representative of the measured parameter.
    Type: Application
    Filed: February 28, 2012
    Publication date: November 1, 2012
    Inventors: NEIL F. HURLEY, WEISHU ZHAO, TUANFENG ZHANG, JOHANNES J. BUITING, NICOLAS X. LESEUR, MUSTAFA AL IBRAHIM