Patents by Inventor Johannes Koch

Johannes Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230312631
    Abstract: The invention relates to a process for the preparation of a product allulose composition comprising the steps of (a) providing a liquid allulose composition comprising allulose dissolved in water; (b) optionally, heating the liquid allulose composition to an elevated temperature, preferably under evaporative conditions thereby reducing the content of water of the allulose composition; (c) feeding the allulose composition into an extruder; (d) extruding the allulose composition in the extruder; (e) obtaining a product allulose composition from the extruder; (f) op-tionally, allowing the product allulose composition to solidify; and (g) optionally, grinding and/or post-drying the product allulose composition. The invention further relates to a product allulose composition that can be prepared by the process according to the invention and its use.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 5, 2023
    Inventors: Timo Johannes KOCH, Sebastian HANFT
  • Publication number: 20230220502
    Abstract: The invention relates to a process for the preparation of an allulose syrup containing allulose at a product concentration of more than 70 wt.-%, relative to the total weight of the allulose syrup, the process comprising the steps of (a) providing an aqueous solution containing allulose at an educt concentration of at most 70 wt.-%, relative to the total weight of the solution; and (b) evaporating water at a temperature of the solution of less than 60° C. and under reduced pressure thereby increasing the concentration of allulose in the aqueous solution starting from the educt concentration until the product concentration is reached.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 13, 2023
    Inventors: Timo Johannes KOCH, Sebastian HANFT
  • Publication number: 20230159579
    Abstract: The invention relates to a process for the preparation of a solid allulose material comprising crystalline allulose, the method comprising the steps of (a) providing in an evaporating crystallizer an aqueous mother liquor containing dissolved allulose; (b) maintaining, preferably until the end of crystallization, the aqueous mother liquor within the evaporating crystallizer at a crystallization temperature within the range of from 20 to 80° C.; (c) maintaining, preferably until the end of crystallization, the vapor phase above the aqueous mother liquor within the evaporating crystallizer at a crystallization pressure within the range of from 40 to 500 mbar; and (d) inducing crystallization of allulose from the aqueous mother liquor at the crystallization temperature and at the crystallization pressure in a supersaturated state thereby obtaining the solid allulose material as a precipitate and a supernatant.
    Type: Application
    Filed: May 26, 2021
    Publication date: May 25, 2023
    Inventors: Timo Johannes KOCH, Stephan MOHR
  • Publication number: 20230102393
    Abstract: A mobile computed tomography system has a gantry with an opening for at least partially accommodating a patient, and a carriage configured to be moved over a substrate with motor assistance. The gantry is arranged on an upper side of a support frame of the carriage. The support frame includes at least one shaped profile tube.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 30, 2023
    Applicant: Siemens Healthcare GmbH
    Inventors: Jan-Christoph KIESEL, Julia BUSCH, Georg WALBERER, Johannes KOCH, Fabian STROBL, Guido SCHRAML
  • Patent number: 11584944
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) or glycolic acid (GA), or MEG and one or more co-product, from one or more pentose and/or hexose sugars. Also provided are methods of producing MEG (or GA), or MEG (or GA) and one or more co-product, from one or more pentose and/or hexose sugars using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA), or MEG and one or more co-product.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 21, 2023
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Lucas Pederson Parizzi, Felipe Galzerani, Jean Marie Francois, Sophie Lajus
  • Patent number: 11384369
    Abstract: The present invention provides biochemical pathways, glyoxylate producing recombinant microorganisms, and methods for the production and yield improvement of glycolic acid and/or glycine via a reverse glyoxylate shunt. The reverse glyoxylate shunt comprises an enzyme that catalyzes the carboxylation of phosphoenol pyruvate (PEP) to oxaloacetate (OAA), or an enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate (OAA) or an enzyme that catalyzes the carboxylation of pyruvate to malate or a combination of any of the previous reactions; an enzyme that catalyzes the conversion of malate to malyl-CoA; an enzyme that catalyzes the conversion of malyl-CoA to glyoxylate and acetyl-CoA; and optionally an enzyme that catalyzes the conversion of oxaloacetate (OAA) to malate. Glyoxylate is reduced to produce glycolate. Alternatively, glyoxylate is converted to glycine.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: July 12, 2022
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Felipe Galzerani, Paulo Moises Raduan Alexandrino
  • Patent number: 11345908
    Abstract: The present disclosure generally relates to modified microorganisms comprising an optimized system for oligosaccharide utilization comprising one or more polynucleotides coding for one or more energy independent oligosaccharide transporters for transporting an oligosaccharide into the microorganism, one or more polynucleotides coding for enzymes that catalyze the conversion of the oligosaccharide into at least one phosphorylated saccharide, and one or more polynucleotides coding for enzymes that catalyze the conversion of the phosphorylated saccharide into an isomer of the phosphorylated saccharide that is utilized in one or more enzymatic pathways in the microorganism for the production of an organic molecule such as acetic acid, acrylic acid, 3-hydroxypropionic acid, lactic acid, etc. The present disclosure also generally relates to methods of using the optimized system for oligosaccharide utilization.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 31, 2022
    Assignee: BRASKEM S.A.
    Inventors: Avram Michael Slovic, Daniel Johannes Koch
  • Publication number: 20220144878
    Abstract: The invention relates to an aqueous liquid composition comprising allulose, wherein the weight content of allulose is at least 10 wt.-%, relative to the total weight of the liquid composition; and wherein the weight content of allulose is at least 10 wt.-%, relative to the total content of all carbohydrates that are contained in the liquid composition; and wherein the liquid composition has a viscosity of not more than 200 mPa·s. The invention also relates to the use of the liquid composition comprising allulose in food applications and beverage applications.
    Type: Application
    Filed: December 14, 2021
    Publication date: May 12, 2022
    Inventors: Timo Johannes Koch, Florian Kipping, Birgit Kaufmann
  • Patent number: 11286490
    Abstract: The present application relates to recombinant microorganisms expressing a dehydratase useful in a one-step, direct fermentative production of one or more primary alkenes from one or more saturated primary or secondary alcohols. Known, well developed high-yielding pathways that use renewable feedstock can be introduced into the recombinant microorganisms to obtain the alcohol precursors. Also provided are methods of producing one or more primary alkenes using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the primary alkene products.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: March 29, 2022
    Assignee: BRASKEM S.A.
    Inventors: Mateus Schreiner Lopes, Daniel Johannes Koch, Iuri Estrada Gouvea, Debora Noma Okamoto, Veronica Leite Queiroz
  • Publication number: 20220011272
    Abstract: The invention relates to a method for determining the total volume and/or the true volume and the porosity of objects, wherein a gas chamber of a closed measurement chamber is compressed or expanded, this volume change ?V in the measurement chamber causes a movement change of a membrane of a transducer, wherein the movement of this membrane of the transducer correlates linearly with the volume change ?V in the measurement chamber, the mechanical movement of said membrane of the transducer being triggered by at least one frequency, as a function of the volume of an object in a measurement chamber, and the movement change of the membrane being measured by a sensor head. The invention also relates to a device suitable for the method.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 13, 2022
    Inventors: Viktor Sydoruk, Johannes Kochs, Dagmar van Dusschoten, Siegfried Jahnke
  • Patent number: 11112325
    Abstract: An arrangement of a fluid-carrying element directly or indirectly on a housing of a compressor, wherein the fluid-carrying element is fluidically connected to the compressor, wherein a separate detection line having a detection opening is provided and the fluid-carrying element has at least one seal for closing the detection opening, which closes the detection opening in a desired assembly position, and wherein for detecting the pressure in the detection line, at least one pressure sensor is provided.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: September 7, 2021
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Johannes Koch, Marko Kuenstner
  • Patent number: 11060486
    Abstract: The invention relates to an internal combustion engine having a fuel tank (36), a tank ventilation line (38) and a Venturi nozzle (30) disposed in a fluid-carrying component (16), wherein the Venturi nozzle (30) has an inflow channel (28), an opening point (40) adjoining downstream of the inflow channel (28) with a fluid connection to the tank ventilation line (38), and an outflow channel (32) adjoining downstream of the opening point (40). In this case, an outflow section (48) of the Venturi nozzle downstream of the opening point (48) is surrounded by the component (16) in such a manner that a detection space (46) is formed around the outflow section (48), wherein the detection space (46) has at least one inlet opening (50) via which the detection space (46) can be pressurized and wherein at least one pressure sensor (34) for monitoring the pressure in the detection space (46) is provided.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 13, 2021
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Johannes Koch, Marko Kuenstner
  • Patent number: 10994276
    Abstract: One aspect of the invention relates to a temperature control device for controlling the temperature of a container, comprising: at least one heating region having at least on heating element, and at least one cooling region having at least one cooling element, wherein the temperature control device is formed to be flexible, at least in some regions, wherein the temperature control device can be transferred from an open position to an arrangement position by flexible deformation, and wherein the temperature control device, in the arrangement position, can be arranged on a wall of the container in a form-fitting manner, at least in some regions, and can be thermally contacted such that the temperature of the container can be controlled by means of the at least one heating element and the at least one cooling element.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: May 4, 2021
    Inventors: Reinhold Ried, Wei Gao, Johannes Koch
  • Patent number: 10947937
    Abstract: A functional component for influencing a tank ventilation of a fuel tank, functionally connected to an internal combustion engine, having a main body, wherein at least one flow channel for guiding fluid from an inlet side to an outlet side is formed in the main body, wherein at least one component for creating a clip connection of the functional component to an intake pipe is formed on the main body. The invention also relates to an arrangement of a functional component for influencing a tank ventilation of a fuel tank, functionally connected to an internal combustion engine, on an intake pipe.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 16, 2021
    Assignees: Volkswagen Aktiengesellschaft, BOGE Elastmetall GmbH
    Inventors: Johannes Koch, Alfons Laumann, Sebastian Pytel
  • Patent number: 10941424
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 9, 2021
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10941454
    Abstract: In alternative embodiments, provided are non-natural or genetically engineered vinylisomerase-dehydratase enzymes, including alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases. In alternative embodiments, provided are non-natural or genetically engineered polypeptides having an activity comprising, for example, a vinylisomerase-dehydratase, an alkenol dehydratase, a linalool dehydratase and/or a crotyl alcohol dehydratase activity, or a combination thereof. In alternative embodiments, also provided are non-natural or genetically engineered nucleic acids (polynucleotides) encoding polypeptides described herein, expression or cloning vehicles comprising or having contained therein nucleic acids as described herein, and non-natural or genetically engineered cells comprising or having contained therein nucleic acids as described herein. In alternative embodiments, also provided are methods for making various organic compounds, including methyl vinyl carbinol and butadiene.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 9, 2021
    Assignees: GENOMATICA, INC., BRASKEM S.A.
    Inventors: Stephanie J. Culler, Robert J. Haselbeck, Harish Nagarajan, Iuri Estrada Gouvea, Daniel Johannes Koch, Mateus Schreiner Garcez Lopes, Lucas Pedersen Parizzi
  • Patent number: 10844811
    Abstract: An internal combustion engine with a fuel tank, a fluid-carrying component and a tank ventilation line, which fluidically connects the fuel tank and the fluid-carrying component, wherein a valve is disposed in the tank ventilation line, wherein a detection subarea of the valve is surrounded by the fluid-carrying component in such a manner that a detection space is formed around the detection subarea, wherein the detection space has at least one inlet opening via which the detection space can be pressurized and wherein at least one pressure sensor for monitoring the pressure in the detection space is provided. A method for monitoring a connection between a valve in a tank ventilation line and a fluid-carrying component is also provided.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: November 24, 2020
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Johannes Koch, Torsten Baranski
  • Publication number: 20200347424
    Abstract: The invention relates to a saccharose phosphorylase that catalyzes the synthesis of glucose-1-phosphate and fructose from saccharose and phosphate, among other things. The saccharose phosphorylase according to the invention can be considered to be a mutation of the saccharose phosphorylase from Bifidobacterium adolescentis. In comparison to wild-type saccharose phosphorylase, the saccharose phosphorylase according to the invention is distinguished by improved activity, process stability, temperature stability, and lower product inhibition and is therefore particularly suitable for use in industrial processes.
    Type: Application
    Filed: March 7, 2017
    Publication date: November 5, 2020
    Inventors: Timo Johannes Koch, Thomas Hässler, Birgit Brucher, Andreas Vogel
  • Patent number: 10774348
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10774317
    Abstract: The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10× higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Avram Michael Slovic, Iuri Estrada Gouvea, Daniel Johannes Koch, Felipe Galzerani