Patents by Inventor Johannes-Leopold Schenk

Johannes-Leopold Schenk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9574247
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: February 21, 2017
    Assignee: PRIMETALS TECHNOLOGIES AUSTRIA GMBH
    Inventors: Robert Millner, Johannes Leopold Schenk, Kurt Wieder
  • Patent number: 9181594
    Abstract: A process for producing pig iron or liquid primary steel products in a smelting unit (1), in particular a melter gasifier. Iron-ore-containing charge materials, and possibly additions, are at least partially reduced in at least one reduction unit (R1, R2, R3, R4) by means of a reducing gas. A first fraction of the at least partially reduced charge materials is melted down in the smelting unit (1), while carbon carriers and oxygen-containing gas are supplied, with the simultaneous formation of the reducing gas. The reducing gas is fed to the reduction unit (R1, R2, R3, R4) and, after the reducing gas has passed through the reduction unit, it is drawn off as top gas. A second fraction of the at least partially reduced charge materials is fed to a smelting reduction unit for reducing and smelting.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: November 10, 2015
    Assignee: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Christian Boehm, Jan-Friedemann Plaul, Johannes Leopold Schenk
  • Patent number: 9139884
    Abstract: A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 22, 2015
    Assignee: PRIMETALS TECHNOLOGIES AUSTRIA GMBH
    Inventors: Georg Aichinger, Thomas Eder, Hado Heckmann, Robert Millner, Johannes Leopold Schenk, Martin Schmidt, Kurt Wieder, Johann Wurm
  • Publication number: 20140361472
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Robert MILLNER, Johannes Leopold SCHENK, Kurt WIEDER
  • Patent number: 8834599
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: September 16, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Johannes Leopold Schenk, Kurt Wieder
  • Patent number: 8808422
    Abstract: A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 19, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Leopold Werner Kepplinger, Robert Millner, Jan-Friedemann Plaul, Johannes Leopold Schenk, Kurt Wieder, Johann Wurm
  • Patent number: 8665437
    Abstract: A method for controlling a transformation process in which the conversion of charge materials to a product takes place along a transformation interface from the crystal and/or grain and/or phase and/or pore surface into the charge material, wherein one or more chemical elements in the charge materials is released and/or incorporated and/or rearranged and wherein the conversion of the charge materials takes place along advancing transformation interfaces. The charge materials are identified on the basis of at least one optical, in particular microscopic, analysis with respect to their phases and/or phase components and/or their phase morphology, structure, texture and/or their chemical composition. On the basis of these variables, reference functions for the charge materials, which describe the conversion of the charge materials in the process, are assigned and used for establishing the process parameters of the transformation process.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: March 4, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Harald Fischer, Heinrich Rochus Mali, Johannes Leopold Schenk, Stefan Schuster, Bernhard Hailu Spuida, Kurt Wieder, Franz Winter
  • Publication number: 20140042677
    Abstract: A process for producing pig iron or liquid primary steel products in a smelting unit (1), in particular a melter gasifier. Iron-ore-containing charge materials, and possibly additions, are at least partially reduced in at least one reduction unit (R1, R2, R3, R4) by means of a reducing gas. A first fraction of the at least partially reduced charge materials is melted down in the smelting unit (1), while carbon carriers and oxygen-containing gas are supplied, with the simultaneous formation of the reducing gas. The reducing gas is fed to the reduction unit (R1, R2, R3, R4) and, after the reducing gas has passed through the reduction unit, it is drawn off as top gas. A second fraction of the at least partially reduced charge materials is fed to a smelting reduction unit for reducing and smelting.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 13, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Christian BOEHM, Jan-Friedemann PLAUL, Johannes Leopold SCHENK
  • Patent number: 8641799
    Abstract: A process for producing agglomerates from fine-grained iron carriers and at least one binder as a charge material for a metallurgical process is shown. In at least one further agglomeration step, the agglomerates are coated with a layer, comprising iron carriers and at least one binder, and heated in such a way that the binder is cured in the region of the surface of the agglomerates. In a process for producing liquid pig iron or liquid primary steel products from charge materials and possibly additions and agglomerates, the agglomerates are preheated in a reducing zone, which has a preheating stage, in such a way that the agglomerates completely harden in the preheating stage.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: February 4, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Christian Boehm, Hado Heckmann, Hans Herbert Stiasny, Johannes Leopold Schenk
  • Patent number: 8632622
    Abstract: A process for producing pig iron or liquid primary steel products in a smelting unit (1), in particular a melter gasifier. Iron-ore-containing charge materials, and possibly additions, are at least partially reduced in at least one reduction unit (R1, R2, R3, R4) by means of a reducing gas. A first fraction of the at least partially reduced charge materials is melted down in the smelting unit (1), while carbon carriers and oxygen-containing gas are supplied, with the simultaneous formation of the reducing gas. The reducing gas is fed to the reduction unit (R1, R2, R3, R4) and, after the reducing gas has passed through the reduction unit, it is drawn off as top gas. A second fraction of the at least partially reduced charge materials is fed to a smelting reduction unit for reducing and smelting.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: January 21, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Christian Boehm, Jan-Friedemann Plaul, Johannes Leopold Schenk
  • Patent number: 8540931
    Abstract: An injector insert pipe is arranged in the gas channel of a nozzle for injecting oxygen-containing gas into a pig iron production unit, wherein an interspace which surrounds the pipe is present over the entire pipe length between the wall of the gas channel and the pipe outer wall. The pipe extends at least as far as the nozzle end face which contains the mouth of the gas channel. The pipe space is connected to an oxygen-containing gas feed line, and the interspace is connected to a protective gas supply line. In a process, oxygen-containing gas is fed into the pipe space, which after it has flowed through the pipe, enters the production unit at an entry velocity, and the interspace is simultaneously flowed through by a gas which exits into the production unit at an exit velocity, wherein the entry velocity is greater than the exit velocity.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: September 24, 2013
    Assignees: Siemens Vai Metals Technologies GmbH, Siemens Aktiengesellschaft
    Inventors: Georg Aichinger, Franz Berner, Stefan Lechner, Marinko Lekic-Ninic, Jan-Friedemann Plaul, Johannes Leopold Schenk, Martin Schmidt, Thomas Söntgen, Bogdan Vuletic, Kurt Wieder, Johann Wurm
  • Patent number: 8496729
    Abstract: Process gas purification device (2) for a melt reduction system (1) comprising at least one reduction reactor (3) and a melting gasification reactor (4), a first line system (5) for discharging a furnace gas (6) from the reduction reactor (3) and a second line system (7) for discharging a generator gas (8) from the melting gasification reactor (4) wherein both line systems (5,7) lead to a respective wet scrubbing system (11, 12). The furnace gas or generator gas flow can be throttled preferably by way of a control element (41) that varies a control gap (40) and the scrubber or cooling liquid (49) can be collected and drained. The first wet scrubber system (11) of the first line system (5) for routing the furnace gas (6) and the second Venturi scrubber system (12) of the second line system (7) for routing the generator gas (8) both discharge into a common mist elimination device (14).
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: July 30, 2013
    Assignees: Siemens Vai Metals Technologies GmbH, Posco
    Inventors: Sin-Myoung Kang, Johannes Leopold Schenk, Martin Schmidt, Kurt Wieder, Johann Wurm
  • Publication number: 20130154166
    Abstract: A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 20, 2013
    Inventors: Leopold Werner Kepplinger, Robert Millner, Jan-Friedemann Plaul, Johannes Leopold Schenk, Kurt Wieder, Johann Wurm
  • Publication number: 20120237421
    Abstract: A method for the removal of CO2 from exhaust gases, e.g., exhaust gases from plants for pig-iron production or exhaust gases from synthesis-gas plants, includes removing CO2 using chemical and/or physical absorption, wherein the heat for regenerating the absorbent is obtained at least partially from an air separation plant. As a result, the CO2 can be separated from the exhaust gases to a greater extent than in the pressure-swing adsorption of other gases, but a lower-order energy carrier can additionally be used for this purpose.
    Type: Application
    Filed: September 7, 2010
    Publication date: September 20, 2012
    Inventors: Robert Millner, Jan-Friedemann Plaul, Johannes Leopold Schenk, Kurt Wieder
  • Publication number: 20120000316
    Abstract: Coal particles to be processed into compressed articles are impregnated with a substance before being mixed with a binder system containing water and finally being processed into compressed articles.
    Type: Application
    Filed: December 23, 2009
    Publication date: January 5, 2012
    Inventors: Hado Heckmann, Johannes Leopold Schenk
  • Publication number: 20110290075
    Abstract: An injector insert pipe is arranged in the gas channel of a nozzle for injecting oxygen-containing gas into a pig iron production unit, wherein an interspace which surrounds the pipe is present over the entire pipe length between the wall of the gas channel and the pipe outer wall . The pipe extends at least as far as the nozzle end face which contains the mouth of the gas channel. The pipe space is connected to an oxygen-containing gas feed line, and the interspace is connected to a protective gas supply line. In a process, oxygen-containing gas is fed into the pipe space, which after it has flowed through the pipe, enters the production unit at an entry velocity, and the interspace is simultaneously flowed through by a gas which exits into the production unit at an exit velocity, wherein the entry velocity is greater than the exit velocity.
    Type: Application
    Filed: November 5, 2009
    Publication date: December 1, 2011
    Inventors: Georg Aichinger, Franz Berner, Stefan Lechner, Marinko Lekic-Ninic, Jan-Friedemann Plaul, Johannes Leopold Schenk, Martin Schmidt, Thomas Söntgen, Bogdan Vuletic, Kurt Wieder, Johann Wurm
  • Publication number: 20110283837
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Application
    Filed: September 29, 2009
    Publication date: November 24, 2011
    Inventors: Robert Millner, Johannes Leopold Schenk, Kurt Wieder
  • Publication number: 20110229276
    Abstract: A method and a device for separating particulate solids from a gas flow, particularly a carrier gas flow for transporting the particulate solids, has a transport line (2) that leads into a separating chamber (5), a connected dry filter (9) for separating dusts and/or fine particulate solids, a discharge line (12) for conducting away the cleaned gas flow, and a storage container (1) for holding the separated particulate solids. The dry filter is equipped with backwash units for cleaning the dry filter.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 22, 2011
    Inventors: Thomas Eder, Robert Millner, Norbert Rein, Johannes Leopold Schenk
  • Publication number: 20110179910
    Abstract: A process for producing agglomerates from fine-grained iron carriers and at least one binder as a charge material for a metallurgical process is shown. In at least one further agglomeration step, the agglomerates are coated with a layer, comprising iron carriers and at least one binder, and heated in such a way that the binder is cured in the region of the surface of the agglomerates. In a process for producing liquid pig iron or liquid primary steel products from charge materials and possibly additions and agglomerates, the agglomerates are preheated in a reducing zone, which has a preheating stage, in such a way that the agglomerates completely harden in the preheating stage.
    Type: Application
    Filed: August 17, 2009
    Publication date: July 28, 2011
    Inventors: Christian Boehm, Hado Heckmann, Hans Herbert Stiasny, Johannes Leopold Schenk
  • Publication number: 20110170114
    Abstract: A method for controlling a transformation process in which the conversion of charge materials to a product takes place along a transformation interface from the crystal and/or grain and/or phase and/or pore surface into the charge material, wherein one or more chemical elements in the charge materials is released and/or incorporated and/or rearranged and wherein the conversion of the charge materials takes place along advancing transformation interfaces. The charge materials are identified on the basis of at least one optical, in particular microscopic, analysis with respect to their phases and/or phase components and/or their phase morphology, structure, texture and/or their chemical composition. On the basis of these variables, reference functions for the charge materials, which describe the conversion of the charge materials in the process, are assigned and used for establishing the process parameters of the transformation process.
    Type: Application
    Filed: May 7, 2009
    Publication date: July 14, 2011
    Inventors: Harald Fischer, Heinrich Rochus Mali, Johannes Leopold Schenk, Stefan Schuster, Bernhard Hailu Spuida, Kurt Wieder, Franz Winter