Patents by Inventor Johannes Marcus Maria Beltman
Johannes Marcus Maria Beltman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230016664Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: ApplicationFiled: July 26, 2022Publication date: January 19, 2023Applicant: ASML NETHERLANDS B.V.Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Patent number: 11428521Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: GrantFiled: November 5, 2021Date of Patent: August 30, 2022Assignee: ASML Netherlands B.V.Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Publication number: 20220057192Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: ApplicationFiled: November 5, 2021Publication date: February 24, 2022Applicant: ASML NETHERLANDS B.V.Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Omer Abubaker Omer ADAM, Michael KUBIS, Martin Jacobus Johan JAK
-
Patent number: 11204239Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: GrantFiled: July 17, 2020Date of Patent: December 21, 2021Assignee: ASML Netherlands B.V.Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Publication number: 20200348125Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: ApplicationFiled: July 17, 2020Publication date: November 5, 2020Applicant: ASML NETHERLANDS B.V.Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Patent number: 10725372Abstract: A method includes determining topographic information of a substrate for use in a lithographic imaging system, determining or estimating, based on the topographic information, imaging error information for a plurality of points in an image field of the lithographic imaging system, adapting a design for a patterning device based on the imaging error information. In an embodiment, a plurality of locations for metrology targets is optimized based on imaging error information for a plurality of points in an image field of a lithographic imaging system, wherein the optimizing involves minimizing a cost function that describes the imaging error information. In an embodiment, locations are weighted based on differences in imaging requirements across the image field.Type: GrantFiled: January 20, 2016Date of Patent: July 28, 2020Assignee: ASML Netherlands B.V.Inventors: Wim Tjibbo Tel, Marinus Jochemsen, Frank Staals, Christopher Prentice, Laurent Michel Marcel Depre, Johannes Marcus Maria Beltman, Roy Werkman, Jochem Sebastiaan Wildenberg, Everhardus Cornelis Mos
-
Patent number: 10718604Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: GrantFiled: July 10, 2019Date of Patent: July 21, 2020Assignee: ASML Netherlands B.V.Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Publication number: 20190346256Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: ApplicationFiled: July 10, 2019Publication date: November 14, 2019Applicant: ASML NETHERLANDS B.V.Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Orner Abubaker Orner ADAM, Michael KUBIS, Martin Jacobus Johan JAK
-
Patent number: 10386176Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: GrantFiled: August 25, 2015Date of Patent: August 20, 2019Assignee: ASML Netherlands B.V.Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
-
Patent number: 10331043Abstract: A method of devising a target arrangement, and associated target and reticle. The target includes a plurality of gratings, each grating having a plurality of substructures. The method includes: defining a target area; locating the substructures within the target area so as to form the gratings; and locating assist features at the periphery of the gratings, the assist features being configured to reduce measured intensity peaks at the periphery of the gratings. The method may include an optimization process including modelling a resultant image obtained by inspection of the target using a metrology process; and evaluating whether the target arrangement is optimized for detection using a metrology process.Type: GrantFiled: January 29, 2015Date of Patent: June 25, 2019Assignee: ASML Netherlands B.V.Inventors: Henricus Wilhelmus Maria Van Buel, Johannes Marcus Maria Beltman, Xing Lan Liu, Hendrik Jan Hidde Smilde, Richard Johannes Franciscus Van Haren
-
Publication number: 20180011398Abstract: A method includes determining topographic information of a substrate for use in a lithographic imaging system, determining or estimating, based on the topographic information, imaging error information for a plurality of points in an image field of the lithographic imaging system, adapting a design for a patterning device based on the imaging error information. In an embodiment, a plurality of locations for metrology targets is optimized based on imaging error information for a plurality of points in an image field of a lithographic imaging system, wherein the optimizing involves minimizing a cost function that describes the imaging error information. In an embodiment, locations are weighted based on differences in imaging requirements across the image field.Type: ApplicationFiled: January 20, 2016Publication date: January 11, 2018Applicant: ASML Netherlands B.V.Inventors: Wim Tjibbo TEL, Marinus JOCHEMSEN, Frank STAALS, Christopher PRENTICE, Laurent Michel Marcel DEPRE, Johannes Marcus Maria BELTMAN, Roy WERKMAN, Jochem Sebastiaan WILDENBERG, Everhardus Cornelis MOS
-
Publication number: 20170176871Abstract: A method of devising a target arrangement, and associated target and reticle. The target includes a plurality of gratings, each grating having a plurality of substructures. The method includes: defining a target area; locating the substructures within the target area so as to form the gratings; and locating assist features at the periphery of the gratings, the assist features being configured to reduce measured intensity peaks at the periphery of the gratings. The method may include an optimization process including modelling a resultant image obtained by inspection of the target using a metrology process; and evaluating whether the target arrangement is optimized for detection using a metrology process.Type: ApplicationFiled: January 29, 2015Publication date: June 22, 2017Applicant: ASML Netherlands B.V.Inventors: Henricus Wilhelmus Maria VAN BUEL, Johannes Marcus Maria BELTMAN, Xing Lan LIU, Hendrik Jan Hidde SMILDE, Richard Johannes Franciscus VAN HAREN
-
Publication number: 20160061589Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.Type: ApplicationFiled: August 25, 2015Publication date: March 3, 2016Applicant: ASML NETHERLANDS B.V.Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak