Patents by Inventor Johannes Wangler

Johannes Wangler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150062549
    Abstract: An assembly for a projection exposure apparatus for EUV projection lithography has an illumination optical unit for guiding illumination light to an illumination field, in which a lithography mask can be arranged. The illumination optical unit comprises a first facet mirror, which comprises a plurality of mirror arrays with respectively a plurality of individual mirrors. The individual mirrors provide individual mirror illumination channels for guiding illumination light partial beams to the illumination field. The mirror arrays of the first facet mirror are arranged in an array superstructure. Gaps extend along at least one main direction (HR?) between neighboring ones of the mirror arrays. Furthermore, the illumination optical unit comprises a second facet mirror, which comprises a plurality of facets, which respectively contribute to imaging a group of the individual mirrors of the field facet mirror into the illumination field via a group mirror illumination channel.
    Type: Application
    Filed: October 16, 2014
    Publication date: March 5, 2015
    Inventors: Michael Patra, Stig Bieling, Markus Deguenther, Johannes Wangler
  • Publication number: 20150049321
    Abstract: Illumination optical unit for illuminating an object field in a projection exposure apparatus, comprising a first facet mirror with a structure, which has a spatial frequency of at least 0.2 mm?1 in at least one direction, and a second facet mirror, comprising a multiplicity of facets, wherein the facets are respectively provided with a mechanism for damping spatial frequencies of the structure of the first facet mirror.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 19, 2015
    Inventors: Stig Bieling, Markus Deguenther, Johannes Wangler
  • Patent number: 8891057
    Abstract: A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(?) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 18, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Layh, Markus Deguenther, Michael Patra, Johannes Wangler, Manfred Maul, Damian Fiolka, Gundula Weiss
  • Publication number: 20140233006
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 21, 2014
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Manfred Maul, Johannes Eisenmenger, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Damian Fiolka, Andras G. Major, Johannes Wangler, Michael Layh
  • Publication number: 20140226141
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Publication number: 20140211188
    Abstract: A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(?) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a second adjusted intensity distribution in the associated exit pupil by less than 0.1 in at least one of an inner ? or an outer ?.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 31, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Michael Layh, Markus Deguenther, Michael Patra, Johannes Wangler, Manfred Maul, Damian Fiolka, Gundula Weiss
  • Patent number: 8767181
    Abstract: In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: July 1, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Toralf Gruner, Daniel Kraehmer, Michael Totzeck, Johannes Wangler, Markus Brotsack, Nils Dieckmann, Aksel Goehnermeier, Markus Schwab, Damian Fiolka, Markus Zenzinger
  • Patent number: 8730455
    Abstract: An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Manfred Maul, Axel Scholz, Markus Deguenther, Johannes Wangler, Vladimir Davydenko
  • Patent number: 8724086
    Abstract: A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(?) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a second adjusted intensity distribution in the associated exit pupil by less than 0.1 in at least one of an inner ? or an outer ?.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 13, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Layh, Markus Deguenther, Michael Patra, Johannes Wangler, Manfred Maul, Damian Fiolka, Gundula Weiss
  • Patent number: 8520307
    Abstract: The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Oliver Wolf, Heiko Siekmann, Eva Kalchbrenner, Siegfried Rennon, Johannes Wangler, Andre Bresan, Michael Gerhard, Nils Haverkamp, Axel Scholz, Ralf Scharnweber, Michael Layh, Stefan Burkart
  • Publication number: 20130148092
    Abstract: Illumination systems for microlithographic projection exposure apparatus, as well as related systems, components and methods are disclosed. In some embodiments, an illumination system includes one or more scattering structures and an optical integrator that produces a plurality of secondary light sources.
    Type: Application
    Filed: February 6, 2013
    Publication date: June 13, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Johannes Wangler, Heiko Siekmann, Kenneth Weible, Ralf Scharnweber, Manfred Maul, Markus Deguenther, Michael Layh, Axel Scholz, Uwe Spengler, Reinhard Voelkel
  • Patent number: 8395756
    Abstract: Illumination systems for microlithographic projection exposure apparatus, as well as related systems, components and methods are disclosed. In some embodiments, an illumination system includes one or more scattering structures and an optical integrator that produces a plurality of secondary light sources.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: March 12, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Wangler, Heiko Siekmann, Kenneth Weible, Ralf Scharnweber, Manfred Maul, Markus Deguenther, Michael Layh, Axel Scholz, Uwe Spengler, Reinhard Voelkel
  • Patent number: 8339577
    Abstract: An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: December 25, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Publication number: 20120293784
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 22, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 8294877
    Abstract: An illumination optical unit for projection lithography for illuminating an object field, in which an object to be imaged can be arranged, with illumination light has a field facet mirror having a plurality of field facets. A pupil facet mirror of the illumination optical unit has a plurality of pupil facets. The pupil facets serve for imaging the field facets respectively assigned individually to the pupil facets into the object field. An individual mirror array of the illumination optical unit has individual mirrors that can be tilted in driven fashion individually. The individual mirror array is arranged in an illumination light beam path upstream of the field facet mirror. This can result in flexibly configurable illumination by the illumination optical unit, this illumination being readily adaptable to predetermined values.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 23, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Wangler, Markus Deguenther, Stig Bieling
  • Publication number: 20120206704
    Abstract: An illumination optical unit for projection lithography for illuminating an object field, in which an object to be imaged can be arranged, with illumination light has a field facet mirror having a plurality of field facets. A pupil facet mirror of the illumination optical unit has a plurality of pupil facets. The pupil facets serve for imaging the field facets respectively assigned individually to the pupil facets into the object field. An individual mirror array of the illumination optical unit has individual mirrors that can be tilted in driven fashion individually. The individual mirror array is arranged in an illumination light beam path upstream of the field facet mirror. This can result in flexibly configurable illumination by the illumination optical unit, this illumination being readily adaptable to predetermined values.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Johannes Wangler, Markus Deguenther, Stig Bieling
  • Publication number: 20120154895
    Abstract: An optical system for generating a light beam for treating a substrate in a substrate plane is disclosed. The light beam has a beam length in a first dimension perpendicular to the propagation direction of the light beam and a beam width in a second dimension perpendicular to the first dimension and also perpendicular to the light propagation direction. The optical system includes a mixing optical arrangement which divides the light beam in at least one of the first and second dimensions into a plurality of light paths incident in the substrate plane in a manner superimposed on one another. At least one coherence-influencing optical arrangement is present in the beam path of the light beam and acts on the light beam to at least reduce the degree of coherence of light for at least one light path distance of one light path from at least one other light path.
    Type: Application
    Filed: January 18, 2012
    Publication date: June 21, 2012
    Applicant: CARL ZEISS LASER OPTICS GMBH
    Inventors: Holger Muenz, Wolfgang Merkel, Damian Fiolka, Johannes Wangler
  • Publication number: 20120153189
    Abstract: An optical system for generating a light beam for treating a substrate arranged in a substrate plane is disclosed. The optical system includes first and second optical arrangements.
    Type: Application
    Filed: January 18, 2012
    Publication date: June 21, 2012
    Applicant: CARL ZEISS LASER OPTICS GMBH
    Inventors: Johannes Wangler, Michael Layh, Markus Zenzinger, Holger Muenz
  • Patent number: 8134687
    Abstract: An illumination system of a microlithographic exposure apparatus has an optical axis and a beam transforming device. This device includes a first mirror with a first reflective surface having a shape that is defined by rotating a straight line, which is inclined with respect to the optical axis, around the optical axis. The device further includes a second mirror with a second reflective surface having a shape that is defined by rotating a curved line around the optical axis. At least one of the mirrors has a central aperture containing the optical axis. This device may form a zoom-collimator for an EUV illumination system that transforms a diverging light bundle into a collimated light bundle of variable shape and/or diameter.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: March 13, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Wolfgang Singer, Johannes Wangler, Rafael Egger, Wilhelm Ulrich
  • Publication number: 20110285978
    Abstract: An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
    Type: Application
    Filed: July 12, 2011
    Publication date: November 24, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Damian FIOLKA, Manfred MAUL, Vladimir DAVYDENKO, Axel SCHOLZ, Markus DEGUENTHER, Johannes WANGLER