Patents by Inventor John A. Batsis

John A. Batsis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108932
    Abstract: Devices and methods are disclosed for remote clinical monitoring performance of exercises using a smart resistance exercise device including a resistance band, a first handle connected to a first end of the resistance band and a second handle connected to a second end of the resistance band, a force sensing assembly operably coupled to the resistance band, and a local receiving device communicatively coupled to the force sensing assembly. The force sensing assembly of the device includes a housing, and a force sensor disposed in the housing and operatively connected to the resistance band to measure a force exerted on the resistance band. The force sensing assembly also includes a processing and communication module communicatively coupled to the force sensor to receive measurements of the force sensor and communicatively coupled to the local receiving device to transmit the measurements to the local receiving device.
    Type: Application
    Filed: April 10, 2023
    Publication date: April 4, 2024
    Inventors: Suehayla Mohieldin, Ryan J. Halter, John A. Batsis, Colin Minor, Curtis Lee Petersen
  • Patent number: 11857837
    Abstract: Devices and methods are disclosed for remote clinical monitoring performance of exercises using an instrumented resistance device (100). An example device (100) includes a resistance band (120) having a first end (122) and a second end (124). A first handle (130) connected to the first end (122) and a second handle (140) connected to the second end (124) of the resistance band (120). The device (100) further includes a force sensing assembly (150) positioned between the first handle (130) and the first end (122). The force sensing assembly (150) includes a force sensor (156) connected to the resistance band (120), a microcontroller (182) connected to the force sensor (156) to receive a set of load force measurements from the force sensor (156), and a communication module (184) connected to the microcontroller (182) to transmit the set of load force measurements to a local data receiving device (170).
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: January 2, 2024
    Assignee: Trustees of Dartmouth College
    Inventors: Emily Wechsler, Ryan Halter, John A. Batsis
  • Patent number: 11623114
    Abstract: Devices and methods are disclosed for remote clinical monitoring performance of exercises using a smart resistance exercise device including a resistance band, a first handle connected to a first end of the resistance band and a second handle connected to a second end of the resistance band, a force sensing assembly operably coupled to the resistance band, and a local receiving device communicatively coupled to the force sensing assembly. The force sensing assembly of the device includes a housing, and a force sensor disposed in the housing and operatively connected to the resistance band to measure a force exerted on the resistance band. The force sensing assembly also includes a processing and communication module communicatively coupled to the force sensor to receive measurements of the force sensor and communicatively coupled to the local receiving device to transmit the measurements to the local receiving device.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: April 11, 2023
    Assignees: Trustees of Dartmouth College, Mary Hitchcock Memorial Hospital, for itself and on behalf of Dartmouth Hitchcock Clinic Lebanon
    Inventors: Suehayla Mohieldin, Ryan J. Halter, John A. Batsis, Colin Minor, Curtis Lee Petersen
  • Publication number: 20210370122
    Abstract: Devices and methods are disclosed for remote clinical monitoring performance of exercises using a smart resistance exercise device including a resistance band, a first handle connected to a first end of the resistance band and a second handle connected to a second end of the resistance band, a force sensing assembly operably coupled to the resistance band, and a local receiving device communicatively coupled to the force sensing assembly. The force sensing assembly of the device includes a housing, and a force sensor disposed in the housing and operatively connected to the resistance band to measure a force exerted on the resistance band. The force sensing assembly also includes a processing and communication module communicatively coupled to the force sensor to receive measurements of the force sensor and communicatively coupled to the local receiving device to transmit the measurements to the local receiving device.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 2, 2021
    Inventors: Suehayla Mohieldin, Ryan J. Halter, John A. Batsis, Colin Minor, Curtis Lee Petersen
  • Publication number: 20210213329
    Abstract: Devices and methods are disclosed for remote clinical monitoring performance of exercises using an instrumented resistance device (100). An example device (100) includes a resistance band (120) having a first end (122) and a second end (124). A first handle (130) connected to the first end (122) and a second handle (140) connected to the second end (124) of the resistance band (120). The device (100) further includes a force sensing assembly (150) positioned between the first handle (130) and the first end (122). The force sensing assembly (150) includes a force sensor (156) connected to the resistance band (120), a microcontroller (182) connected to the force sensor (156) to receive a set of load force measurements from the force sensor (156), and a communication module (184) connected to the microcontroller (182) to transmit the set of load force measurements to a local data receiving device (170).
    Type: Application
    Filed: May 17, 2019
    Publication date: July 15, 2021
    Inventors: Emily Wechsler, Ryan Halter, John A. Batsis