Patents by Inventor John A. Becker

John A. Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190255336
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 10307604
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 4, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 9795797
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 24, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20170259070
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20160310750
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 9393405
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: July 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20140236172
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 8738147
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 8204605
    Abstract: An apparatus and method can receive wireless energy using a wireless electrostimulation electrode assembly. In certain examples, at least some of the received wireless energy can be delivered as an electrostimulation to a heart. In certain examples, the wireless electrostimulation electrode can be mechanically supported at least partially using a ring formed by an annulus of a mitral valve of the heart. In certain examples, the wireless electrostimulation electrode assembly can be configured to be intravascularly delivered to an implant location within a chamber of the heart at the annulus of the mitral valve of the heart, and can fit entirely within the heart.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: June 19, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, Daniel M. Lafontaine, John A. Becker, Michael J. Pikus, Kevin D. Edmunds, Martin R. Willard
  • Publication number: 20090234407
    Abstract: An apparatus and method can receive wireless energy using a wireless electrostimulation electrode assembly. In certain examples, at least some of the received wireless energy can be delivered as an electrostimulation to a heart. In certain examples, the wireless electrostimulation electrode can be mechanically supported at least partially using a ring formed by an annulus of a mitral valve of the heart. In certain examples, the wireless electrostimulation electrode assembly can be configured to be intravascularly delivered to an implant location within a chamber of the heart at the annulus of the mitral valve of the heart, and can fit entirely within the heart.
    Type: Application
    Filed: February 4, 2009
    Publication date: September 17, 2009
    Inventors: Roger Hastings, Daniel M. Lafontaine, John A. Becker, Michael J. Pikus, Kevin D. Edmunds, Martin R. Willard
  • Publication number: 20090204170
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 13, 2009
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 7161150
    Abstract: A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: January 9, 2007
    Assignee: Los Alamos National Security, LLC
    Inventors: Christen M. Frankle, John A. Becker, Christopher P. Cork, Norman W. Madden
  • Publication number: 20040164250
    Abstract: A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 26, 2004
    Inventors: Christopher P. Cork, John A. Becker, Christen M. Frankle, Norman W. Madden
  • Patent number: 6396061
    Abstract: A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: May 28, 2002
    Assignee: The Regents of the University of California
    Inventors: Norman W. Madden, Christopher P. Cork, John A. Becker, David A. Knapp
  • Patent number: 4386654
    Abstract: A hydraulically operated downhole pump that is connected to or disposed in a string of tubing, and when operated by pressurized oil from the ground surface, is capable of discharging production fluid, gas, and pressurized oil from the well either separately or in desired combinations thereof. The pump includes an elongate housing preferably of such transverse cross section as to be longitudinally movable through a tubing string, with the pump including universal joint connected upper and lower helical screws that rotate in slidable sealing contact with upper and lower double threaded resilient stator blocks secured to the interior of the housing. As pressurized oil is discharged into the upper end of the housing the upper helical screw and associated stator act as a motor to drive the lower helical screw relative to the lower stator block.
    Type: Grant
    Filed: May 11, 1981
    Date of Patent: June 7, 1983
    Inventor: John A. Becker