Patents by Inventor John A. Cole, JR.

John A. Cole, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210166821
    Abstract: Three-dimensional modeling of patient-specific tumors. In an embodiment, patient-specific data, representing a tumor microenvironment and one or more metrics, are received. A patient-specific spatial model, representing the tumor microenvironment as a lattice comprising a plurality of elastic material points, is generated from the patient-specific data. Patient-specific drug interaction and metabolism models are also determined. The tumor microenvironment is then simulated, for one or more drug interventions, through a plurality of iterations in which each elastic material point is updated in each iteration based on computations of chemical diffusion, biochemical reactions, metabolism, drug interactions, growth and death, and mechanical forces. A report, comprising a three-dimensional representation of the patient-specific spatial model after one or more iterations, is generated for the drug intervention(s).
    Type: Application
    Filed: January 29, 2021
    Publication date: June 3, 2021
    Inventors: John A. Cole, JR., Joseph R. Peterson
  • Patent number: 10943701
    Abstract: Three-dimensional modeling of patient-specific tumors. In an embodiment, patient-specific data, representing a tumor microenvironment and one or more metrics, are received. A patient-specific spatial model, representing the tumor microenvironment as a lattice comprising a plurality of elastic material points, is generated from the patient-specific data. Patient-specific drug interaction and metabolism models are also determined. The tumor microenvironment is then simulated, for one or more drug interventions, through a plurality of iterations in which each elastic material point is updated in each iteration based on computations of chemical diffusion, biochemical reactions, metabolism, drug interactions, growth and death, and mechanical forces. A report, comprising a three-dimensional representation of the patient-specific spatial model after one or more iterations, is generated for the drug intervention(s).
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: March 9, 2021
    Assignee: SIMBIOSYS, INC.
    Inventors: John A. Cole, Jr., Joseph R. Peterson
  • Patent number: 10839963
    Abstract: Three-dimensional modeling of patient-specific tumors. In an embodiment, patient-specific data, representing a tumor microenvironment and one or more metrics, are received. A patient-specific spatial model, representing the tumor microenvironment as a lattice comprising a plurality of elastic material points, is generated from the patient-specific data. Patient-specific drug interaction and metabolism models are also determined. The tumor microenvironment is then simulated, for one or more drug interventions, through a plurality of iterations in which each elastic material point is updated in each iteration based on computations of chemical diffusion, biochemical reactions, metabolism, drug interactions, growth and death, and mechanical forces. A report, comprising a three-dimensional representation of the patient-specific spatial model after one or more iterations, is generated for the drug intervention(s).
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: November 17, 2020
    Assignee: SIMBIOSYS, INC.
    Inventors: John A. Cole, Jr., Joseph R. Peterson
  • Publication number: 20200211714
    Abstract: Three-dimensional modeling of patient-specific tumors. In an embodiment, patient-specific data, representing a tumor microenvironment and one or more metrics, are received. A patient-specific spatial model, representing the tumor microenvironment as a lattice comprising a plurality of elastic material points, is generated from the patient-specific data. Patient-specific drug interaction and metabolism models are also determined. The tumor microenvironment is then simulated, for one or more drug interventions, through a plurality of iterations in which each elastic material point is updated in each iteration based on computations of chemical diffusion, biochemical reactions, metabolism, drug interactions, growth and death, and mechanical forces. A report, comprising a three-dimensional representation of the patient-specific spatial model after one or more iterations, is generated for the drug intervention(s).
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Inventors: John A. Cole, JR., Joseph R. Peterson
  • Publication number: 20200118690
    Abstract: Three-dimensional modeling of patient-specific tumors. In an embodiment, patient-specific data, representing a tumor microenvironment and one or more metrics, are received. A patient-specific spatial model, representing the tumor microenvironment as a lattice comprising a plurality of elastic material points, is generated from the patient-specific data. Patient-specific drug interaction and metabolism models are also determined. The tumor microenvironment is then simulated, for one or more drug interventions, through a plurality of iterations in which each elastic material point is updated in each iteration based on computations of chemical diffusion, biochemical reactions, metabolism, drug interactions, growth and death, and mechanical forces. A report, comprising a three-dimensional representation of the patient-specific spatial model after one or more iterations, is generated for the drug intervention(s).
    Type: Application
    Filed: August 14, 2019
    Publication date: April 16, 2020
    Inventors: John A. Cole, JR., Joseph R. Peterson