Patents by Inventor John A. Detre

John A. Detre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220304582
    Abstract: Systems and methods for localized pseudo-continuous ASL (pCASL) of arterial blood local multi-coil arrays in an MRI system allow a series of pulses to selectively label blood with an on-resonance magnetic field in one or more arteries in a labeling plane while masking blood in others with an off-resonance magnetic field. This allows perfusion imaging and is well suited for imaging of cerebral blood flow.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Yulin Chang, Jason Stockmann, Thomas Witzel, Marta Vidorreta Diaz De Cerio, John Detre, Lincoln Craven-Brightman
  • Patent number: 8082015
    Abstract: An embodiment of the invention includes a device, system and method for determining the characteristics of deep tissue. The novel method includes measuring blood flow rate and oxygenation characteristics of the tissue, and determining oxygen metabolism of the tissue as a function of the measure blood flow rate and measure oxygenation. The blood flow rate characteristics are measured as a function of light fluctuations caused by the tissue, while the oxygenation characteristics are measured as a function of transmission of light through the tissue with respect to the wavelength of light. The tissue may be layered tissue, for example, a portion of a brain. The tissue characteristics may be measured during times of varying levels of exercise intensity.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: December 20, 2011
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Arjun G. Yodh, Joel H. Greenberg, Guoqiang Yu, John A Detre, Turgut Durduran, Mark G. Burnett, Emile R. Mohler, III, Harry Quon, Stephen M. Hahn
  • Publication number: 20100142823
    Abstract: Embodiments of the present invention relate to a Surrounding Neighbors based Autocalibrating Partial Parallel Imaging (SNAPPI) approach to MRI reconstruction. Several 2D PPI reconstruction methods may be provided by applying SNAPPI to recover the partially skipped k-space data along two PE directions separately or non-separately, in k-space or in the hybrid k-space and image-space.
    Type: Application
    Filed: March 7, 2008
    Publication date: June 10, 2010
    Inventors: Ze Wang, John A. Detre
  • Publication number: 20060063995
    Abstract: An embodiment of the invention includes a device, system and method for determining the characteristics of deep tissue. The novel method includes measuring blood flow rate and oxygenation characteristics of the tissue, and determining oxygen metabolism of the tissue as a function of the measure blood flow rate and measure oxygenation. The blow flow rate characteristics are measured as a function of light fluctuations caused by the tissue, while the oxygenation characteristics are measured as a function of transmission of light through the tissue with respect to the wavelength of light. The tissue may be layered tissue, for example, a portion of a brain. The tissue characteristics may be measured during times of varying levels of exercise intensity.
    Type: Application
    Filed: April 13, 2005
    Publication date: March 23, 2006
    Applicant: Trustees of the University of Pennsylvania
    Inventors: Arjun Yodh, Joel Greenberg, Guoqiang Yu, John Detre, Turgut Durduran, Mark Burnett, Emile Mohler, Harry Quon, Stephen Hahn
  • Patent number: 5402785
    Abstract: Methods for measuring the perfusion of fluid in a substance are shown to include subjecting the fluid to electromagnetic energy so as to cause a response related to the magnetization of the fluid before it enters the substance, performing magnetic resonance measurements on the substance to generate intensity information and processing the intensity information to determine perfusion. In one embodiment of the invention, perfusion is measured by labeling atoms in the fluid at a base point, generating a steady state in the substance by continuing to label atoms until the effect caused by labeled atoms perfusing in the substance, reaches a steady state, generating image information for the substance and processing the image information to determine perfusion. It is preferred to label atoms by applying magnetic resonance perturbation. In one embodiment the labeling of atoms involves saturating spins associated with the atoms.
    Type: Grant
    Filed: August 16, 1991
    Date of Patent: April 4, 1995
    Assignees: Trustees of the University of Penna, Carnegie Mellon University
    Inventors: John S. Leigh, John A. Detre, Donald S. Williams, Alan P. Koretsky