Patents by Inventor John A. Edmond

John A. Edmond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120164765
    Abstract: A method of forming an ohmic contact for a semiconductor device can be provided by thinning a substrate to provide a reduced thickness substrate and providing a metal on the reduced thickness substrate. Laser annealing can be performed at a location of the metal and the reduced thickness substrate at an energy level to form a metal-substrate material to provide the ohmic contact thereat.
    Type: Application
    Filed: March 12, 2012
    Publication date: June 28, 2012
    Inventors: David B. Slater, JR., John Edmond, Matthew Donofrio
  • Publication number: 20120153343
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, JR., Matthew Donofrio, John Edmond
  • Publication number: 20120129969
    Abstract: The invention relates to radiation curable compositions comprising a liquid 0/s(acyl)phosphine photo initiators of formula (Ï): wherein each of Ar1, Ar2 and Ar3 is independently a substituted or unsubstituted aryl group. The invention also relates to stabilized forms of liquid bis(acyl)phosphines of formula (I) and radiation curable composition comprising said stabilized photoinitiators. The radiation curable compositions are selected from the group consisting of an optical fiber coating composition and a coating composition capable of radiation cure on concrete and a coating composition capable of radiation cure on metal.
    Type: Application
    Filed: June 21, 2011
    Publication date: May 24, 2012
    Inventors: Timothy Edward Bishop, Edward Joseph Murphy, John Edmond Southwell, Satyendra Sarmah, TaiYeon Lee
  • Patent number: 8163577
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 24, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
  • Patent number: 8101961
    Abstract: A light emitting diode is disclosed that includes a growth substrate, a substantially transparent ohmic contact on a first surface of the growth substrate, a Group III nitride, light-emitting active region on a second surface of the growth substrate, a p-type Group III nitride contact layer on the active region that transmits light generated in the active region, and a substantially transparent ohmic contact on the p-type contact layer.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 24, 2012
    Assignee: Cree, Inc.
    Inventors: John A. Edmond, David B. Slater, Jr., Michael J. Bergmann
  • Publication number: 20110284903
    Abstract: A submount for a light emitting device package includes a substrate. A first bond pad and a second bond pad are on a first surface of the substrate. The first bond pad includes a die attach region offset toward a first end of the substrate and configured to receive a light emitting diode thereon. The second bond pad includes a bonding region between the first bond pad and the second end of the substrate and a second bond pad extension that extends from the bonding region along a side of the substrate toward a corner of the substrate at the first end of the substrate. First and second solder pads are a the second surface of the substrate. The first solder pad is adjacent the first end of the substrate and contacts the second bond pad. The second solder pad is adjacent the second end of the substrate and contacts the first bond pad. Related LED packages and methods of forming LED packages are disclosed.
    Type: Application
    Filed: June 20, 2011
    Publication date: November 24, 2011
    Inventors: Ban P. Loh, Nathaniel O. Cannon, Norbert Hiller, John Edmond, Mitch Jackson, Nicholas W. Medendorp, JR.
  • Patent number: 8017963
    Abstract: A light emitting diode is disclosed that includes an active structure, a first ohmic contact on the active structure, and a transparent conductive oxide layer on the active structure opposite the first ohmic contact. The transparent conductive oxide layer has a larger footprint than said active structure. A dielectric mirror is positioned on the transparent conductive oxide layer opposite said active structure and a second contact is positioned on the transparent conductive oxide layer opposite the dielectric mirror and separated from the active structure.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 13, 2011
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, John Edmond, James Ibbetson, Ting Li
  • Publication number: 20110198626
    Abstract: A method for fabricating light emitting diode (LEDs) comprises providing a plurality of LEDs on a substrate wafer, each of which has an n-type and p-type layer of Group-III nitride material formed on a SiC substrate with the n-type layer sandwiched between the substrate and p-type layer. A conductive carrier is provided having a lateral surface to hold the LEDs. The LEDs are flip-chip mounted on the lateral surface of the conductive carrier. The SiC substrate is removed from the LEDs such that the n-type layer is the top-most layer. A respective contact is deposited on the n-type layer of each of the LEDs and the carrier is separated into portions such that each of the LEDs is separated from the others, with each of the LEDs mounted to a respective portion of said carrier.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Inventor: JOHN EDMOND
  • Publication number: 20110180839
    Abstract: A light emitting diode structure is disclosed that includes a light emitting active portion formed of epitaxial layers and carrier substrate supporting the active portion. A bonding metal system that predominates in nickel and tin joins the active portion to the carrier substrate. At least one titanium adhesion layer is between the active portion and the carrier substrate and a platinum barrier layer is between the nickel-tin bonding system and the titanium adhesion layer. The platinum layer has a thickness sufficient to substantially prevent tin in the nickel tin bonding system from migrating into or through the titanium adhesion layer.
    Type: Application
    Filed: February 25, 2011
    Publication date: July 28, 2011
    Inventors: Matthew Donofrio, David B. Slater, JR., John A. Edmond, Hua-Shuang Kong
  • Patent number: 7964888
    Abstract: A submount for a light emitting device package includes a rectangular substrate. A first bond pad and a second bond pad are on a first surface of the substrate. The first bond pad includes a die attach region offset toward a first end of the substrate and configured to receive a light emitting diode thereon. The second bond pad includes a bonding region between the first bond pad and the second end of the substrate and a second bond pad extension that extends from the bonding region along a side of the substrate toward a corner of the substrate at the first end of the substrate. First and second solder pads are a the second surface of the substrate. The first solder pad is adjacent the first end of the substrate and contacts the second bond pad. The second solder pad is adjacent the second end of the substrate and contacts the first bond pad. Related LED packages and methods of forming LED packages are disclosed.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Nathaniel O. Cannon, Norbert Hiller, John Edmond, Mitch Jackson, Nicholas W. Medendorp, Jr.
  • Patent number: 7932111
    Abstract: A method for fabricating light emitting diode (LEDs) comprises providing a plurality of LEDs on a substrate wafer, each of which has an n-type and p-type layer of Group-III nitride material formed on a SiC substrate with the n-type layer sandwiched between the substrate and p-type layer. A conductive carrier is provided having a lateral surface to hold the LEDs. The LEDs are flip-chip mounted on the lateral surface of the conductive carrier. The SiC substrate is removed from the LEDs such that the n-type layer is the top-most layer. A respective contact is deposited on the n-type layer of each of the LEDs and the carrier is separated into portions such that each of the LEDs is separated from the others, with each of the LEDs mounted to a respective portion of said carrier.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: April 26, 2011
    Assignee: Cree, Inc.
    Inventor: John Edmond
  • Patent number: 7910945
    Abstract: A light emitting diode structure is disclosed that includes a light emitting active portion formed of epitaxial layers and carrier substrate supporting the active portion. A bonding metal system that predominates in nickel and tin joins the active portion to the carrier substrate. At least one titanium adhesion layer is between the active portion and the carrier substrate and a platinum barrier layer is between the nickel-tin bonding system and the titanium adhesion layer. The platinum layer has a thickness sufficient to substantially prevent tin in the nickel tin bonding system from migrating into or through the titanium adhesion layer.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: March 22, 2011
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, David B. Slater, Jr., John A. Edmond, Hua-Shuang Kong
  • Publication number: 20110008922
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Application
    Filed: September 10, 2010
    Publication date: January 13, 2011
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, JR., Matthew Donofrio, John Edmond
  • Patent number: 7855459
    Abstract: A semiconductor structure and a bonding method are disclosed that includes a device wafer, a substrate wafer, and a metal bonding system between the device wafer and the substrate wafer. The metal bonding system includes gold, tin, and nickel, and includes at least one discrete layer of gold and tin that is at least about 88 percent gold by weight.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 21, 2010
    Assignee: Cree, Inc.
    Inventors: David B. Slater, Jr., John A. Edmond, Hua-Shuang Kong
  • Publication number: 20100276700
    Abstract: A light emitting diode is disclosed that includes a support structure and a Group III nitride light emitting active structure mesa on the support structure. The mesa has its sidewalls along an indexed crystal plane of the Group III nitride. A method of forming the diode is also disclosed that includes the steps of removing a substrate from a Group III nitride light emitting structure that includes a sub-mount structure on the Group III nitride light emitting structure opposite the substrate, and thereafter etching the surface of the Group III nitride from which the substrate has been removed with an anisotropic etch to develop crystal facets on the surface in which the facets are along an index plane of the Group III nitride. The method can also include etching the light emitting structure with an anisotropic etch to form a mesa with edges along an index plane of the Group III nitride.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 4, 2010
    Inventors: JOHN A. EDMOND, David B. Slater, JR., Hua Shuang Kong, Matthew Donofrio
  • Publication number: 20100252851
    Abstract: A light emitter package having increased feature sizes for improved luminous flux and efficacy. An emitter chip is disposed on a submount with a lens that covers the emitter chip. In some cases, the ratio of the width of the light emitter chip to the width of said lens in a given direction is 0.5 or greater. Increased feature sizes allow the package to emit light more efficiently. Some packages include submounts having dimensions greater than 3.5 mm square used in conjunction with larger emitter chips. Materials having higher thermal conductivities are used to fabricate the submounts, providing the package with better thermal management.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 7, 2010
    Inventors: David Emerson, Brian Collins, Michael Bergmann, John Edmond, Eric Tarsa, Peter Andrews, Bernd Keller, Christopher Hussell, Amber Salter
  • Patent number: 7795623
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: September 14, 2010
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
  • Patent number: 7791061
    Abstract: A light emitting diode is disclosed that includes a support structure and a Group III nitride light emitting active structure mesa on the support structure. The mesa has its sidewalls along an indexed crystal plane of the Group III nitride. A method of forming the diode is also disclosed that includes the steps of removing a substrate from a Group III nitride light emitting structure that includes a sub-mount structure on the Group III nitride light emitting structure opposite the substrate, and thereafter etching the surface of the Group III nitride from which the substrate has been removed with an anisotropic etch to develop crystal facets on the surface in which the facets are along an index plane of the Group III nitride. The method can also include etching the light emitting structure with an anisotropic etch to form a mesa with edges along an index plane of the Group III nitride.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: September 7, 2010
    Assignee: Cree, Inc.
    Inventors: John A. Edmond, David B. Slater, Jr., Hua Shuang Kong, Matthew Donofrio
  • Publication number: 20100160506
    Abstract: This disclosure is directed to an integrated method for making synthetic hydrocarbon fluids, plasticizers and polar synthetic lubricant base stocks from a renewable feedstock. More particularly, the disclosure is directed to a metathesis reaction of natural oil or its derivative ester and ethylene in the presence of an effective amount of a metathesis catalyst to form linear alpha-olefins, internal olefins and reduced chain length triglycerides. The linear alpha-olefins and/or internal olefins are polymerized to produce synthetic hydrocarbon fluids in the presence of a suitable catalyst. The reduced chain length triglycerides are converted into polar synthetic lubricant base stocks or plasticizers by hydrogenation, isomerization, followed by hydrogenations, or by hydroisomerization processes. Alternatively, the reduced chain length triglycerides can also be epoxidized to form epoxidized triglyceride plasticizers, optionally followed by carbonation, to form carbonated triglyceride plasticizers.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Inventors: Margaret May-Som Wu, Karla Schall Colle, Ramzi Yanni Saleh, Allen D. Godwin, John Edmond Randolph Stanat
  • Patent number: D635525
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 5, 2011
    Assignee: Cree, Inc.
    Inventors: John A. Edmond, Michael J. Bergmann, Matthew Donofrio, Winston T. Parker