Patents by Inventor John A. Hauck

John A. Hauck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10687725
    Abstract: A method of tracking a position of a catheter within a patient includes securing a navigational reference at a reference location within the patient, defining the reference location as the origin of a coordinate system, determining a location of an electrode moving within the patient relative to that coordinate system, monitoring for a dislodgement of the navigational reference from the initial reference location, for example by measuring the navigational reference relative to a far field reference outside the patient's body, and generating a signal indicating that the navigational reference has dislodged from the reference location. Upon dislodgement, a user may be provided with guidance to help reposition and secure the navigational reference to the initial reference location, or the navigational reference may be automatically repositioned and secured to the initial reference location. Alternatively, a reference adjustment may be calculated to compensate for the changed reference point/origin.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 23, 2020
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Publication number: 20200129127
    Abstract: A system for determining a location of an electrode of a medical device (e.g., a catheter) in a body of a patient includes a localization block for producing an uncompensated electrode location, a motion compensation block for producing a compensation signal (i.e., for respiration, cardiac, etc.), and a mechanism for subtracting the compensation signal from the uncompensated electrode location. The result is a corrected electrode location substantially free of respiration and cardiac artifacts. The motion compensation block includes a dynamic adaptation feature which accounts for changes in a patient's respiration patterns as well as intentional movements of the medical device to different locations within the patient's body. The system further includes an automatic compensation gain control which suppresses compensation when certain conditions, such as noise or sudden patch impedance changes, are detected.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Lev A. Koyrakh, Eric J. Voth, John A. Hauck, Jeffrey A. Schweitzer
  • Patent number: 10582882
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: March 10, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Publication number: 20200060547
    Abstract: A transmitting element for generating a magnetic field for tracking of an object includes a first spiral trace that extends from a first outer origin inward to a central origin in a first direction. A second spiral trace can extend from the central origin outward to a second outer origin in the first direction. The second spiral trace can extend from the central origin to the second outer origin in the first direction. The first spiral trace and the second spiral trace can be physically connected at the central origin to form the fluorolucent magnetic transmitting element and at least a portion of the first spiral trace overlaps at least a portion of the second spiral trace.
    Type: Application
    Filed: November 21, 2017
    Publication date: February 27, 2020
    Inventors: Anthony D. Hill, John Hauck, Ryan M. Albu, Timothy G. Curran, Ryan Link
  • Patent number: 10561371
    Abstract: A system for determining a location of an electrode of a medical device (e.g., a catheter) in a body of a patient includes a localization block for producing an uncompensated electrode location, a motion compensation block for producing a compensation signal (i.e., for respiration, cardiac, etc.), and a mechanism for subtracting the compensation signal from the uncompensated electrode location. The result is a corrected electrode location substantially free of respiration and cardiac artifacts. The motion compensation block includes a dynamic adaptation feature which accounts for changes in a patient's respiration patterns as well as intentional movements of the medical device to different locations within the patient's body. The system further includes an automatic compensation gain control which suppresses compensation when certain conditions, such as noise or sudden patch impedance changes, are detected.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: February 18, 2020
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Lev A. Koyrakh, Eric J. Voth, John A. Hauck, Jeffrey A. Schweitzer
  • Publication number: 20190374120
    Abstract: A system and method for assessing contact between a medical device and tissue may comprise an electronic control unit (ECU) configured to be coupled to a medical device, the medical device comprising a first electrode and a second electrode. The ECU may be further configured to select the first electrode as an electrical source and the second electrode as an electrical sink, to cause an electrical signal to be driven between the source and sink, to detect respective electric potentials on the first electrode and the second electrode while the electrical signal is driven, and to determine an impedance respective of one of the first electrode and the second electrode according to both of the respective electric potentials.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 12, 2019
    Inventor: John A. Hauck
  • Publication number: 20190321463
    Abstract: Methods for preparing highly purified AAV vector formulations are provided. The highly pure AAV formulations described herein are superior for clinical use.
    Type: Application
    Filed: May 23, 2019
    Publication date: October 24, 2019
    Applicant: The Children's Hospital of Philadelphia
    Inventors: John Fraser Wright, Guang Qu, Bernd Hauck, Katherine A. High
  • Publication number: 20190269368
    Abstract: A system for ablating tissue includes an ablation catheter for insertion into the body of a patient and a robotic controller for moving the catheter within the body. The robotic controller advances the catheter until the catheter contacts the tissue surface, maintains contact between the catheter and the tissue surface, and moves the catheter along a predetermined path to create a substantially continuous lesion of ablated tissue. A display device may be used to present a graphical representation of an area of tissue to be ablated. A user interface permits selection of a plurality of treatment points on the graphical representation. The interface is preferably coupled to the controller and catheter such that the controller may cause the catheter to automatically ablate tissue at and between the plurality of treatment points in response to the received user input.
    Type: Application
    Filed: April 5, 2019
    Publication date: September 5, 2019
    Inventors: John A. Hauck, Jeffrey A. Schweitzer, Kedar Ravindra Belhe, Jeff Burrell
  • Patent number: 10392632
    Abstract: This application relates to the fields of gene therapy and molecular biology. In accordance with the present invention, an adeno-associated virus (AAV) vector comprising an altered capsid protein is provided. More specifically, this invention provides adeno-associated viral vectors comprising protein capsid variants which accelerate vector breakdown and clearance, thereby reducing undesirable immune responses.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 27, 2019
    Assignee: THE CHILDREN'S HOSPITAL OF PHILADELPHIA
    Inventors: John Fraser Wright, Olga Zelenaia, Bernd Hauck, Federico Mingozzi, Katherine A. High
  • Patent number: 10368760
    Abstract: A system and method for assessing contact between a medical device and tissue may comprise an electronic control unit (ECU) configured to be coupled to a medical device, the medical device comprising a first electrode and a second electrode. The ECU may be further configured to select the first electrode as an electrical source and the second electrode as an electrical sink, to cause an electrical signal to be driven between the source and sink, to detect respective electric potentials on the first electrode and the second electrode while the electrical signal is driven, and to determine an impedance respective of one of the first electrode and the second electrode according to both of the respective electric potentials.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 6, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Divison, Inc.
    Inventor: John A. Hauck
  • Patent number: 10328145
    Abstract: Methods for preparing highly purified AAV vector formulations are provided. The highly pure AAV formulations described herein are superior for clinical use.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: June 25, 2019
    Assignee: The Children's Hospital of Philadelphia
    Inventors: John Fraser Wright, Guang Qu, Bernd Hauck, Katherine A. High
  • Patent number: 10258285
    Abstract: A system for ablating tissue includes an ablation catheter for insertion into the body of a patient and a robotic controller for moving the catheter within the body. The robotic controller advances the catheter until the catheter contacts the tissue surface, maintains contact between the catheter and the tissue surface, and moves the catheter along a predetermined path to create a substantially continuous lesion of ablated tissue. A display device may be used to present a graphical representation of an area of tissue to be ablated. A user interface permits selection of a plurality of treatment points on the graphical representation. The interface is preferably coupled to the controller and catheter such that the controller may cause the catheter to automatically ablate tissue at and between the plurality of treatment points in response to the received user input.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 16, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John A. Hauck, Jeffrey A. Schweitzer, Kedar Ravindra Belhe, Jeffrey L. Burrell
  • Patent number: 10231788
    Abstract: A robotic system for manipulating a catheter with a plurality of steering wires longitudinally situated within a length of the catheter includes a user interface configured to display a view of an anatomical model and to receive one or more user inputs; a catheter manipulator assembly configured to linearly actuate one or more control members of a catheter; and a robotic controller configured to provide a view of an anatomical model to the user interface; accept one or more user inputs from the user interface; register the one or more user inputs to a coordinate system associated with the anatomical model; compute one or more actuator commands from the one or more registered inputs; and cause the catheter manipulator assembly to linearly actuate one or more control members of a catheter in accordance with the computed actuator commands.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: March 19, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Eric S. Olson, John A. Hauck, Nicholas A. Patronik, Mark B. Kirschenman, Cem M. Shaquer, Yusof Ganji
  • Patent number: 10154875
    Abstract: A system and method are provided for assessing the compliance of internal patient tissue for purposes of catheter guidance and/or ablation procedures. Specifically, the system/method provides for probing internal patient tissue in order to obtain force and/or tissue displacement measurements. These measurements are utilized to generate an indication of tissue elasticity. In one exemplary embodiment, the indication of elasticity is correlated with an image of the internal tissue area and an output of this image including elasticity indications is displayed for a user.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: December 18, 2018
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventor: John A. Hauck
  • Publication number: 20180246016
    Abstract: A platen for a metallographic grinder has an outer peripheral rim with an upper surface having a lower height. Also, fingers engaging a specimen are allowed to move laterally (i.e., wobble) to minimize the tipping forces on the specimen during the grinding process. Either one or both of these structures can be employed and results in a much flatter specimen surface for use in subsequent analysis.
    Type: Application
    Filed: February 12, 2018
    Publication date: August 30, 2018
    Inventor: John Hauck
  • Publication number: 20180185104
    Abstract: The present disclosure relates to a control system for user-guided robotic control of a medical device and includes an electronic control unit, a computer-readable memory coupled to the ECU, and a visualization system configured to provide a view of an anatomical model. The memory contains user interface logic configured to be executed by the ECU, and configured to obtain input from a touch screen display with respect to the view of an anatomical model. Control logic stored in the memory is also configured to be executed by said ECU and is configured to produce an actuation control signal responsive to the input to control actuation of a manipulator assembly so as to move the medical device.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 5, 2018
    Inventors: Eric S. Olson, John A. Hauck, Nicholas A. Patronik, Cem M. Shaquer
  • Publication number: 20180078177
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 22, 2018
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 9888973
    Abstract: The present disclosure relates to a control system for user-guided robotic control of a medical device and includes an electronic control unit, a computer-readable memory coupled to the ECU, and a visualization system configured to provide a view of an anatomical model. The memory contains user interface logic configured to be executed by the ECU, and configured to obtain input from a touch screen display with respect to the view of an anatomical model. Control logic stored in the memory is also configured to be executed by said ECU and is configured to produce an actuation control signal responsive to the input to control actuation of a manipulator assembly so as to move the medical device.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 13, 2018
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Eric S. Olson, John A. Hauck, Nicholas A. Patronik, Cem M. Shaquer
  • Patent number: 9867556
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 16, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Publication number: 20170360372
    Abstract: A robotic surgical system includes a track, a catheter holding device including a catheter receiving portion translatably associated with the track, a translation servo mechanism to control translation of the catheter holding device relative to the track, a catheter deflection control mechanism, a deflection servo mechanism to control the catheter deflection control mechanism, and a controller to control at least one of the servo mechanisms. The catheter receiving portion is adapted for quick installation and removal of a catheter. The catheter receiving portion may be rotatable, with a rotation servo mechanism to control the rotatable catheter receiving portion. The controller controls at least one of the deflection and rotation servo mechanisms to maintain a substantially constant catheter deflection as the catheter rotates. An introducer, which may be steerable, and an expandable, collapsible sterile tube may also be provided.
    Type: Application
    Filed: September 1, 2017
    Publication date: December 21, 2017
    Inventors: John A. Hauck, Jeffrey A. Schweitzer, Troy Terrance Tegg, Jim D. Essington, Mark Johnson, Kedar Ravindra Belhe