Patents by Inventor John A. Latham
John A. Latham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12122821Abstract: The present disclosure provides methods for the prevention or treatment of metabolic disorders. In exemplary embodiments, methods of administering an anti-CGRP antibody are provided, optionally in combination with a second agent, wherein peripheral and/or hepatic glucose utilization is increased, thereby preventing or treating diseases and disorders associated with insulin resistance. Compositions comprising an anti-CGRP antibody are also provided, optionally in combination with a second agent, which are suitable for administration to increase peripheral and/or hepatic glucose utilization and thereby prevent or treat diseases and disorders associated with insulin resistance.Type: GrantFiled: July 12, 2019Date of Patent: October 22, 2024Assignee: H. LUNDBECK A/SInventors: Brian Baker, Jeffrey T.L. Smith, John Latham
-
Patent number: 12077581Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.Type: GrantFiled: December 16, 2021Date of Patent: September 3, 2024Assignee: H. LUNDBECK A/SInventors: Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Publication number: 20240209075Abstract: Compositions and methods relating to antibodies that specifically bind to TGF-beta binding proteins are provided. These methods and compositions relate to altering bone mineral density by interfering with the interaction between a TGF-beta binding protein sclerostin and a TGF-beta superfamily member, particularly a bone morphogenic protein. Increasing bone mineral density has uses in diseases and conditions in which low bone mineral density typifies the condition, such as osteopenia, osteoporosis, and bone fractures.Type: ApplicationFiled: June 12, 2023Publication date: June 27, 2024Inventors: David G. Winkler, Jiye Shi, John Latham
-
Publication number: 20240174738Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for CGRP. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-CGRP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-CGRP antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-CGRP antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with CGRP.Type: ApplicationFiled: July 5, 2023Publication date: May 30, 2024Inventors: Brian Robert Kovacevich, Leon F. Garcia-Martinez, Katie Olson Anderson, Benjamin H. Dutzar, Jens J. Billgren, John A. Latham, Danielle M. Mitchell, Patricia Dianne McNeill, Nicole M. Janson, Maria-Cristina Loomis
-
Patent number: 11993648Abstract: This invention relates to methods of screening for anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof, for potential use in treating or preventing PACAP-associated photophobia or light aversion, and therapeutic compositions containing and methods of using anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof.Type: GrantFiled: November 20, 2020Date of Patent: May 28, 2024Assignees: H. LUNDBECK A/SInventors: Adisa Kuburas, Bianca Mason, Levi P. Sowers, Andrew F. Russo, Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Patent number: 11938185Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.Type: GrantFiled: December 15, 2020Date of Patent: March 26, 2024Assignee: H. LUNDBECK A/SInventors: Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Patent number: 11827700Abstract: The present invention is directed to antibodies and fragments thereof and humanized versions thereof having binding specificity for IL-6. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-IL-6 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making the anti-IL-6 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-IL-6 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with IL-6.Type: GrantFiled: November 11, 2020Date of Patent: November 28, 2023Assignee: Vitaeris Inc.Inventors: Leon F. Garcia-Martinez, Anne Elisabeth Carvalho Jensen, Katie Anderson, Benjamin H. Dutzar, Ethan W. Ojala, Brian R. Kovacevich, John A. Latham, Jeffrey T. L. Smith
-
Patent number: 11702468Abstract: Compositions and methods relating to antibodies that specifically bind to TGF-beta binding proteins are provided. These methods and compositions relate to altering bone mineral density by interfering with the interaction between a TGF-beta binding protein sclerostin and a TGF-beta superfamily member, particularly a bone morphogenic protein. Increasing bone mineral density has uses in diseases and conditions in which low bone mineral density typifies the condition, such as osteopenia, osteoporosis, and bone fractures.Type: GrantFiled: August 28, 2019Date of Patent: July 18, 2023Assignee: UCB Pharma, S.A.Inventors: David G. Winkler, Jiye Shi, John Latham
-
Publication number: 20230174641Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Another embodiment of this invention relates to the antibodies binding fragments thereof described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.Type: ApplicationFiled: June 27, 2022Publication date: June 8, 2023Inventors: Andrew Lawrence FELDHAUS, Leon GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katie Olson ANDERSON, Ethan Wayne OJALA, Pei FAN, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Jeffrey T.L. SMITH, John LATHAM
-
Publication number: 20230125604Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.Type: ApplicationFiled: April 19, 2022Publication date: April 27, 2023Inventors: Maria-Cristina Loomis, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Publication number: 20220306734Abstract: This invention generally pertains to antibodies and antigen-binding antibody Fragments, preferably humanized, chimeric, and human antibodies and antigen-binding antibody fragments. compositions containing such antibodies and antigen-binding antibody fragments or cells, e.g., immune cells such as T, Treg, or NK cells which express same, wherein such antibodies and antigen-binding antibody Fragments specifically bind to mGluR5. The invention also relates to therapeutic and diagnostic uses for the antibodies, antigen-binding antibody fragments, and compositions thereof.Type: ApplicationFiled: July 22, 2020Publication date: September 29, 2022Inventors: Carol J. RAPORT, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Jens BILLGREN, Michelle SCALLEY-KIM, Ethan Wayne OJALA, Jenny MULLIGAN, Pei FAN, Maria-Cristina LOOMIS, Jeffrey T.L. SMITH, John A. LATHAM, Vanessa Lisbeth RUBIN
-
Patent number: 11447560Abstract: Methods are provided for the synthesis and secretion of recombinant hetero-multimeric proteins in mating competent yeast. A first expression vector is transformed into a first haploid cell; and a second expression vector is transformed into a second haploid cell. The transformed haploid cells, each individually synthesizing a non-identical polypeptide, are identified and then genetically crossed or fused. The resulting diploid strains are utilized to produce and secrete fully assembled and biologically functional hetero-multimeric protein.Type: GrantFiled: March 11, 2019Date of Patent: September 20, 2022Assignees: KECK GRADUATE INSTITUTE, H. LUNDBECK A/SInventors: James M. Cregg, John A. Latham, Mark Litton, Randall Schatzman, Ilya I. Tolstrorukov
-
Publication number: 20220289836Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.Type: ApplicationFiled: December 16, 2021Publication date: September 15, 2022Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRIX, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
-
Patent number: 11427631Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Another embodiment of this invention relates to the antibodies binding fragments thereof described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.Type: GrantFiled: February 3, 2020Date of Patent: August 30, 2022Assignee: H. LUNDBECK A/SInventors: Andrew Lawrence Feldhaus, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Jeffrey T. L. Smith, John Latham
-
Patent number: 11352409Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.Type: GrantFiled: February 11, 2019Date of Patent: June 7, 2022Assignee: H. LUNDBECK A/SInventors: Maria-Cristina Loomis, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Patent number: 11325967Abstract: The present invention is directed to methods of inhibiting or preventing photophobia in subjects in need thereof using anti-CGRP antibodies or antibody fragments that inhibit photophobia, especially CGRP-associated photophobia. These antibodies and fragments are useful in treating different disorders associated with photophobia such as migraine, cluster headaches and the like. The present invention also provides assays using transgenic Nestin/Ramp1 rodents, utilizing a CGRP model light aversive behavior model for identifying therapeutically effective anti-CGRP antibodies and fragments thereof having binding specificity for CGRP which inhibit or prevent photophobia in subjects in need thereof. The present invention is specifically directed to methods for identifying therapeutically effective antibodies and fragments thereof having binding specificity for CGRP that may be used to treat CGRP associated disorders such as migraine.Type: GrantFiled: April 18, 2019Date of Patent: May 10, 2022Assignees: H. LUNDBECK A/S, THE UNIVERSITY OF IOWA RESEARCH FOUNDATIONInventors: Andrew F. Russo, Eric A. Kaiser, Ana Recober, Adisa Kuburas, Ann C. Raddant, Brian R. Kovacevich, John Latham, Jeffrey T. L. Smith, Leon F. Garcia-Martinez
-
Publication number: 20220073606Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.Type: ApplicationFiled: August 9, 2021Publication date: March 10, 2022Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
-
Patent number: 11254741Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.Type: GrantFiled: January 8, 2019Date of Patent: February 22, 2022Assignee: H. LUNDBECK A/SInventors: Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T. L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
-
Patent number: 11225667Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.Type: GrantFiled: October 29, 2018Date of Patent: January 18, 2022Assignee: H. LUNDBECK A/SInventors: Danielle Marie Mitchell, Leon F. Garcia-Martinez, Patricia Dianne McNeill, Ethan Wayne Ojala, Mehmet Inan, John Latham
-
Patent number: 11214610Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.Type: GrantFiled: May 8, 2012Date of Patent: January 4, 2022Assignee: H. LUNDBECK A/SInventors: Patricia Dianne McNeill, Leon F. Garcia-Martinez, Nicole Janson, Gary Lesnicki, Pei Qi, John A. Latham